https://www.mdu.se/

mdu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
TAMAA: UPPAAL-based Mission Planning for Autonomous Agents
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-2416-4205
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-2870-2680
2020 (English)In: Proceedings of the ACM Symposium on Applied Computing, 2020, p. 1624-1633Conference paper, Published paper (Refereed)
Abstract [en]

Autonomous vehicles, such as construction machines, operate in hazardous environments while being required to function at high productivity. To meet both safety and productivity, planning obstacle-avoiding routes in an efficient and effective manner is of primary importance, especially when relying on autonomous vehicles to safely perform their missions. This work explores the use of model checking for the automatic generation of mission plans for autonomous vehicles, which are guaranteed to meet certain functional and extra-functional requirements (e.g., timing). We propose modeling of autonomous vehicles as agents in timed automata together with monitors for supervising their behavior in time (e.g., battery level). We automate this approach by implementing it in a tool called TAMAA (Timed-Automata-based Planner for Multiple Autonomous Agents) and integrating it with a mission-configuration tool. We demonstrate the applicability of our approach to an industrial autonomous wheel loader use case.

Place, publisher, year, edition, pages
2020. p. 1624-1633
Keywords [en]
autonomous agents, mission planning, UPPAAL
National Category
Engineering and Technology Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-46277DOI: 10.1145/3341105.3374001ISI: 000569720900227Scopus ID: 2-s2.0-85083037693OAI: oai:DiVA.org:mdh-46277DiVA, id: diva2:1376895
Conference
The 35th ACM/SIGAPP Symposium On Applied Computing SAC2020, 30 Mar 2020, Brno, Czech Republic
Projects
DPAC - Dependable Platforms for Autonomous systems and ControlAvailable from: 2019-12-10 Created: 2019-12-10 Last updated: 2020-10-15Bibliographically approved
In thesis
1. Automatic Model Generation and Scalable Verification for Autonomous Vehicles: Mission Planning and Collision Avoidance
Open this publication in new window or tab >>Automatic Model Generation and Scalable Verification for Autonomous Vehicles: Mission Planning and Collision Avoidance
2020 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous vehicles such as mobile driver-less construction equipment bear the promise of increased safety and industrial productivity by automating repetitive tasks and reducing manual labor costs. These systems are usually involved in safety- or mission-critical scenarios, therefore they require thorough analysis and verification. Traditional approaches such as simulation and prototype testing are limited in their scope of verifying a system that interacts autonomously with an unpredictable environment that assumes the presence of humans and varying site conditions. Methods for formal verification could be more suitable in providing guarantees of safe operation of autonomous vehicles within specified unpredictable environments. However, employing them entails addressing two main challenges: (i) constructing the models of the systems and their environment, and (ii) scaling the verification to the incurred model complexity. We address these two challenges for two essential aspects of autonomous vehicle design: mission planning and collision avoidance. Though inherently different, communication between these two aspects is necessary, as the information obtained from verifying collision avoidance can help to improve the mission planning and vice versa. Finding a solution that addresses both mission planning and collision avoidance modeling and verification, while decoupling them for solution maintainability is one crux of this study. Another one deals with demonstrating the applicability and scalability of the proposed approach on complex and industrial-level systems.

In this thesis, we propose a two-layer framework for mission planning and verification of autonomous vehicles. The framework separates the modeling and computing mission plans in a discrete environment, from the vehicle movement within a continuous environment, in which collision avoidance algorithms based on dipole fields are proven to ensure safe behavior. We call the layer for mission planning, the "static layer", and the other one the "dynamic layer". Due to the inherent difference between the layers, we use different modeling and verification approaches, namely: (i) the timed automata formalism and the UPPAAL model checker to compute mission plans for the autonomous vehicles, and (ii) hybrid automata and statistical model checking using UPPAAL Statistical Model Checker to verify collision avoidance and safe operation. We create model-generation algorithms, based on which we develop tool support for the static layer, called TAMAA (Timed-Automata-Based Planner for Autonomous Agents). The tool enables the designers to configure their systems and environments in a graphical user interface, and utilize formal methods and advanced path-planning algorithms to generate mission plans automatically. TAMAA also integrates reinforcement learning with model checking to alleviate the state-space explosion problem when the number of vehicles increases. We create a hybrid model for the dynamic layer of the framework and propose a pattern-based modeling method for the embedded control systems of the autonomous vehicles to ease the design and facilitate reuse. We validate the proposed framework and design method on an industrial use case involving autonomous wheel loaders, for which we verify invariance, reachability, and liveness properties.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2020
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 291
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-47918 (URN)978-91-7485-469-5 (ISBN)
Presentation
2020-06-15, Västerås Campus (+ Online/Zoom), Mälardalen University, Västerås, 09:00 (English)
Opponent
Supervisors
Projects
DPAC
Funder
Knowledge Foundation, 20150022
Available from: 2020-05-08 Created: 2020-05-07 Last updated: 2022-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Gu, RongEnoiu, Eduard PaulSeceleanu, Cristina

Search in DiVA

By author/editor
Gu, RongEnoiu, Eduard PaulSeceleanu, Cristina
By organisation
Embedded Systems
Engineering and TechnologyComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 129 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf