https://www.mdu.se/

mdu.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design challenges in hardware development of time-sensitive networking: A research plan
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-3469-1834
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-9704-7117
Show others and affiliations
2019 (English)In: CEUR Workshop Proceedings, Volume 2457, CEUR-WS , 2019, Vol. 2457Conference paper, Published paper (Refereed)
Abstract [en]

Time-Sensitive Networking (TSN) is a set of ongoing projects within the IEEE standardization to guarantee timeliness and low-latency communication based on switched Ethernet for industrial applications. The huge demand is mainly coming from industries where intensive data transmission is required, such as in the modern vehicles where cameras, lidars and high-bandwidth modern sensors are connected. The TSN standards are evolving over time, hence the hardware needs to change depending upon the modifications. In addition, high performance hardware is required to obtain a full benefit from the standards. In this paper, we present a research plan for developing novel techniques to support a parameterized and modular hardware IP core of the multi-stage TSN switch fabric in VHSIC (Very High Speed Integrated Circuit) Hardware Description Language (VHDL), which can be deployed in any Field-Programmable-Gate-Array (FPGA) devices. We present the challenges on the way towards the mentioned goal. 

Place, publisher, year, edition, pages
CEUR-WS , 2019. Vol. 2457
Series
CEUR Workshop Proceedings, ISSN 1613-0073 ; 2457
Keywords [en]
FPGA, Memory management, Predictability, Time-sensitive network, Cyber Physical System, Embedded systems, Field programmable gate arrays (FPGA), Integrated circuit design, Vehicle transmissions, Design challenges, Hardware development, High-performance hardware, Low-latency communication, Switched ethernet, Very high speed integrated circuits, Computer hardware description languages
National Category
Computer Engineering Embedded Systems
Identifiers
URN: urn:nbn:se:mdh:diva-45837Scopus ID: 2-s2.0-85073187187OAI: oai:DiVA.org:mdh-45837DiVA, id: diva2:1365516
Conference
2019 Cyber-Physical Systems PhD Workshop, CPSWS 2019; Alghero; Italy; 23 September 2019
Available from: 2019-10-25 Created: 2019-10-25 Last updated: 2022-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Ghaderi, AdnanDaneshtalab, MasoudAshjaei, Seyed Mohammad HosseinLoni, MohammadMubeen, SaadSjödin, Mikael

Search in DiVA

By author/editor
Ghaderi, AdnanDaneshtalab, MasoudAshjaei, Seyed Mohammad HosseinLoni, MohammadMubeen, SaadSjödin, Mikael
By organisation
Embedded Systems
Computer EngineeringEmbedded Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 116 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf