mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Future directions for CHP plants using biomass and waste - Adding production of vehicle fuels
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0003-2661-1961
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-7233-6916
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-8466-356X
Show others and affiliations
2019 (English)In: E3S Web of Conferences, EDP Sciences , 2019, article id 01006Conference paper, Published paper (Refereed)
Abstract [en]

In Northern Europe, the production of many biobased CHP plants is getting affected due to the enormous expansion of wind and solar power. In addition, heat demand varies throughout the year, and existing CHP plants show less technical performance and suffer economically. By integrating the existing CHP plants with other processes for the production of chemicals, they can be operated more hours, provide operational and production flexibility and thus increase efficiency and profitability. In this paper, we look at a possible solution by converting an existing CHP plant into integrated biorefinery by retrofitting pyrolysis and gasification process. Pyrolysis is retrofitted in an existed CHP plant. Bio-oil obtained from pyrolysis is upgraded to vehicle grade biofuels. Gasification process located upfront of CHP plant provides the hydrogen required for upgradation of biofuel. The results show that a pyrolysis plant with 18 ton/h feed handling capacity (90 MWth), when integrated with gasification for hydrogen requirement and CHP plant for heat can produce 5.2 ton/h of gasoline/diesel grade biofuels. The system integration gives positive economic benefits too but the annual operating hours can impact economic performance. 

Place, publisher, year, edition, pages
EDP Sciences , 2019. article id 01006
National Category
Energy Systems
Identifiers
URN: urn:nbn:se:mdh:diva-45259DOI: 10.1051/e3sconf/201911301006Scopus ID: 2-s2.0-85071879296OAI: oai:DiVA.org:mdh-45259DiVA, id: diva2:1352806
Conference
2019 SUstainable PolyEnergy Generation and HaRvesting, SUPEHR 2019, 4 September 2019 through 6 September 2019
Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2019-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Salman, Chaudhary AwaisDahlquist, ErikThorin, EvaKyprianidis, KonstantinosAvelin, Anders

Search in DiVA

By author/editor
Salman, Chaudhary AwaisDahlquist, ErikThorin, EvaKyprianidis, KonstantinosAvelin, Anders
By organisation
Future Energy Center
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf