mdh.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt161",{id:"formSmash:upper:j_idt161",widgetVar:"widget_formSmash_upper_j_idt161",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt162_j_idt164",{id:"formSmash:upper:j_idt162:j_idt164",widgetVar:"widget_formSmash_upper_j_idt162_j_idt164",target:"formSmash:upper:j_idt162:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Optimization of the Wishart Joint Eigenvalue Probability Density Distribution Based on the Vandermonde Determinant.PrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt245",{id:"formSmash:j_idt245",widgetVar:"widget_formSmash_j_idt245",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
(English)Manuscript (preprint) (Other academic)
##### Abstract [en]

##### Keywords [en]

Vandermonde determinant · Orthogonal Ensembles, Gaussian Ensembles, Wishart Ensembles, Eigenvalue Density optimization
##### National Category

Probability Theory and Statistics Mathematical Analysis
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-44568OAI: oai:DiVA.org:mdh-44568DiVA, id: diva2:1329166
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt463",{id:"formSmash:j_idt463",widgetVar:"widget_formSmash_j_idt463",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt469",{id:"formSmash:j_idt469",widgetVar:"widget_formSmash_j_idt469",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt475",{id:"formSmash:j_idt475",widgetVar:"widget_formSmash_j_idt475",multiple:true}); Available from: 2019-06-24 Created: 2019-06-24 Last updated: 2019-10-12Bibliographically approved
##### In thesis

A number of models from mathematics, physics, probability theory and statistics can be described in terms of Wishart matrices and their eigenvalues. The most prominent example being the Laguerre ensembles of the spectrum of Wishart matrix. We aim to express extreme points of the joint eigenvalue probability densitydistribution of a Wishart matrix using optimisation techniques for the Vandermondedeterminant over certain surfaces implicitly defined by univariate polynomials.

1. Electrostatic Discharge Currents Representation using the Multi-Peaked Analytically Extended Function by Interpolation on a D-Optimal Design$(function(){PrimeFaces.cw("OverlayPanel","overlay1329412",{id:"formSmash:j_idt751:0:j_idt755",widgetVar:"overlay1329412",target:"formSmash:j_idt751:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Extreme points of the Vandermonde determinant and phenomenological modelling with power exponential functions$(function(){PrimeFaces.cw("OverlayPanel","overlay1329454",{id:"formSmash:j_idt751:1:j_idt755",widgetVar:"overlay1329454",target:"formSmash:j_idt751:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1193",{id:"formSmash:j_idt1193",widgetVar:"widget_formSmash_j_idt1193",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1248",{id:"formSmash:lower:j_idt1248",widgetVar:"widget_formSmash_lower_j_idt1248",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1249_j_idt1251",{id:"formSmash:lower:j_idt1249:j_idt1251",widgetVar:"widget_formSmash_lower_j_idt1249_j_idt1251",target:"formSmash:lower:j_idt1249:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});