We present modified antenna-like devices - applicators - for direct detection of internal inhomogeneities such as breast tumours and brain haemorrhages, at a frequency about 1 GHz. This direct detection provides the possibility of using a simple microwave generator and simple rectification and position registration of the received signals. Direct readouts are thus possible, without any massive computing resources as with tomographic imaging. The transmitting applicator is non-contacting and in free air close to the object. It generates an essentially quasistatic axial magnetic field which induces a circular electric field in the tissue. The receiving 3D contacting applicator contains a high-permittivity ceramic and is resonant. Its mode field provides the desired polarisation sensitivity and filters out the main electric field. The overall system sensitivity for detection of internal inhomogeneities is accomplished by optimised use of the orthogonality of the primary magnetic, induced electric, and diffracted electric fields. When developments are completed, the system will replace or complement existing commercial technologies at a low cost.