mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
What guides information consensus? Approaching the reduction of equivocality in process innovations
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-0798-0753
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0002-5963-2470
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0001-7935-8811
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.ORCID iD: 0000-0003-4308-2678
(English)In: International Journal of Manufacturing Research IJMR, ISSN 1750-0591Article in journal (Refereed) Accepted
Abstract [en]

This study investigates the achievement of information consensus and the reduction of equivocality in process innovations. Drawing on the operations management literature, a new framework to guide information consensus in the reduction of equivocality in process innovations is proposed. The analysis is based on a real-time case study in the heavy vehicle industry. The results show that information consensus is not achieved by a single event, but active work towards this goal is necessary, and a clear set of pre-requisites is needed for achieving information consensus. The concepts of strategic objective, decision areas, and external and internal fit are identified as pre-requisites for achieving information consensus about the purpose, characteristics, and functionalities of process innovations.

Place, publisher, year, edition, pages
Switzerland.
Keywords [en]
production, process innovation, case study, equivocality, strategic objective, decision area, external fit, internal fit, uncertainty
National Category
Engineering and Technology Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:mdh:diva-43935OAI: oai:DiVA.org:mdh-43935DiVA, id: diva2:1323146
Projects
INNOFACTURE - innovative manufacturing developmentAvailable from: 2019-06-11 Created: 2019-06-11 Last updated: 2019-10-15Bibliographically approved
In thesis
1. Supporting Decision-Making in the Design of Production Systems: A Discrete Event Simulation perspective
Open this publication in new window or tab >>Supporting Decision-Making in the Design of Production Systems: A Discrete Event Simulation perspective
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Manufacturing companies are introducing process innovations, namely new production processes or technologies, to achieve increased competitiveness. Production systems design can ensure the fulfillment of process innovations. However, literature shows that the staff responsible for the design of production systems face unfamiliar circumstances, lack of consensus or understanding (equivocality), and absence of information (uncertainty). Hence, manufacturing companies find it difficult to support decision-making in the design of production systems leading to increased competitiveness. One way to support decision-making during production systems design is through discrete-event simulation (DES). However, there is limited understanding of the application of DES in decision-making support, in this context.

Therefore, the purpose of this thesis is to support decision-making through DES in the design of production systems involving process innovations. To this end, the thesis reviews the current understanding of production system design, including decision-making and DES. This thesis adopts a qualitative case study method to extract empirical data from three production systems design projects of a manufacturing company in the heavy vehicle industry.

The thesis offers several contributions. Firstly, the findings identify the conditions of use, challenges, requirements, and activities essential for the utilization of DES during production system design related to process innovations. These important findings are critical for supporting decision-making when manufacturing companies renew their production processes. Secondly, this thesis reveals that determining the conditions of use of DES for supporting decision-making rests on the structuredness of a decision (e.g. its degree of equivocality or analyzability), and the quantitative or qualitative nature or DES models. Thirdly, the results describe four novel findings about the challenges undermining the use of DES including equivocality, uncertainty, and the lack of a structured approach and the absence of resources for DES use. Fourthly, the results reveal three requirements necessary for the use of DES including analyzing information consensus, specifying the activities of conceptual models, and coordinating DES models with the information needs. Fifthly, this thesis provides three valuable findings describing additional activities in the design of production systems related to defining the objectives of DES models, and facilitating a structured approach and the management of resources for the use of DES.

This thesis present a framework that contributes to the use of DES for decision-making support at manufacturing companies. Based on this framework, managers of those companies can supervise formal activities involving the use of DES in production systems design.

Place, publisher, year, edition, pages
Eskilstuna: Mälardalen University, 2019
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 299
Keywords
production system design; Discrete Event Simulation; process innovation; decision-making
National Category
Engineering and Technology Production Engineering, Human Work Science and Ergonomics
Research subject
Innovation and Design
Identifiers
urn:nbn:se:mdh:diva-45542 (URN)978-91-7485-443-5 (ISBN)
Public defence
2019-11-29, Filen, Mälardalens högskola, Eskilstuna, 13:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Available from: 2019-10-15 Created: 2019-10-15 Last updated: 2019-10-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Flores-García, ErikBruch, JessicaWiktorsson, MagnusJackson, Mats

Search in DiVA

By author/editor
Flores-García, ErikBruch, JessicaWiktorsson, MagnusJackson, Mats
By organisation
Innovation and Product Realisation
Engineering and TechnologyProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf