mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Potentials for increased application of renewables in the transportation system: A case study for Södermanland County, Sweden
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-7576-760x
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-8191-4901
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-9230-1596
2019 (English)In: Energy Procedia, Elsevier Ltd , 2019, p. 267-273Conference paper, Published paper (Refereed)
Abstract [en]

In this study, possible alternations in a regional transport sector are assessed to increase the use of renewable resources. Three scenarios are developed aimed to investigate different alternatives including potential straw-based bioethanol supply to fuel regional cars with combustion engines, more use of Electrical Vehicles (EVs) with use of potential power from solar energy, and the feasibility of application of hybrid cars fueled with electricity and bioethanol. The evaluation considers the reduction in CO 2 emissions and increased balance in energy demand and supply. Results of the study indicate that application of hybrid vehicles with bioethanol-fueled engines and electrical motors could potentially reduce the CO 2 emissions compared with other proposed approaches in the studied scenarios. At the same time, there would be a balance in the system, so that, the bioethanol production from the available cereal straw in the region can meet the energy demand of suggested hybrid cars in wintertime. While, the energy supply from solar cells installed on the rooftop of the buildings can cover the electricity need of the motor during summer. This approach will also result in increased use of renewables in the transportation system.

Place, publisher, year, edition, pages
Elsevier Ltd , 2019. p. 267-273
Keywords [en]
EVs, Hybrid, Renewable resources, Solar cells, Straw-based bioethanol
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:mdh:diva-43133DOI: 10.1016/j.egypro.2018.12.061ISI: 000471291100043Scopus ID: 2-s2.0-85063808717OAI: oai:DiVA.org:mdh-43133DiVA, id: diva2:1305828
Conference
Applied Energy Symposium and Forum, Renewable Energy Integration with Mini/Microgrids, REM 2018, 29–30 September 2018, Rhodes, Greece
Available from: 2019-04-18 Created: 2019-04-18 Last updated: 2019-07-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Daraei, MahsaThorin, EvaAvelin, AndersDotzauer, Erik

Search in DiVA

By author/editor
Daraei, MahsaThorin, EvaAvelin, AndersDotzauer, Erik
By organisation
Future Energy Center
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf