Working Memory (WM) processing is central for human cognitive behavior. Using neurofeedback training to enhance the individual WM capacity is a promising technique but requires careful consideration when choosing the feedback signal. Feedback in terms of univariate spectral power (specifically theta and alpha power) has yielded questionable behavioral effects. However, a promising new direction for WM neurofeedback training is by using a measure of WM that is extracted by multivariate pattern classification. This study recorded EEG oscillatory activity from 15 healthy participants while they were engaged in the n-back task, n[1,2]. Univariate measures of the theta, alpha, and theta-over-alpha power ratio and a measure of WM extracted from multivariate pattern classification (of n-back task load conditions) was compared in relation to individual n-back task performance. Results show that classification performance is positively correlated to individual 2-back task performance while theta, alpha and thetaover-alpha power ratio is not. These results suggest that the discriminability of multivariate EEG oscillatory patterns between two WM load conditions reflects individual WM capacity.