https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Traditional and lazy pageranks for a line of nodes connected with complete graphs
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Department of Mathematics, College of Natural and Applied Sciences, University of Dar es Salaam,Tanzania. (MAM)ORCID iD: 0000-0001-7822-2103
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. Department of Mathematics, School of Physical Sciences, Makerere University, Kampala, Uganda. (MAM)
Mälardalen University, School of Education, Culture and Communication, Educational Sciences and Mathematics. (MAM)ORCID iD: 0000-0002-1624-5147
Department of Mathematics, School of Physical Sciences, Makerere University, Kampala, Uganda.
Show others and affiliations
2018 (English)In: Stochastic Processes and Applications: SPAS2017, Västerås and Stockholm, Sweden, October 4-6, 2017 / [ed] Sergei Silvestrov, Anatoliy Malyarenko, Milica Rančić, Springer, 2018, Vol. 271, p. 391-412Chapter in book (Refereed)
Abstract [en]

PageRank was initially defined by S. Brin and L. Page for the purpose of measuring the importance of web pages (nodes) based on the structure of links between them. Due to existence of diverse methods of random walk on the graph, variants of PageRank now exists. They include traditional (or normal) PageRank due to normal random walk and Lazy PageRank due to lazy random walk on a graph. In this article, we establish how the two variants of PageRank changes when complete graphs are connected to a line of nodes whose links between the nodes are in one direction. Explicit formulae for the two variants of PageRank are presented. We have noted that the ranks on a line graph are the same except their numerical values which differ. Further, we have observed that both normal random walk and lazy random walk on complete graphs spend almost the same time at each node.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 271, p. 391-412
Series
Springer Proceedings in Mathematics and Statistics, ISSN 2194-1009
Keywords [en]
Graph, Lazy PageRank, PageRank, Random walk, Random processes, Stochastic systems, Websites, Complete graphs, Diverse methods, Explicit formula, Line graph, Numerical values, Graph theory
National Category
Probability Theory and Statistics
Research subject
Mathematics/Applied Mathematics
Identifiers
URN: urn:nbn:se:mdh:diva-41835DOI: 10.1007/978-3-030-02825-1_17ISI: 000674508200016Scopus ID: 2-s2.0-85058552957ISBN: 978-3-030-02824-4 (print)OAI: oai:DiVA.org:mdh-41835DiVA, id: diva2:1274023
Conference
International Conference on “Stochastic Processes and Algebraic Structures – From Theory Towards Applications”, SPAS 2017; Västerås and Stockholm; Sweden; 4 October 2017 through 6 October 2017; Code 221789
Funder
Sida - Swedish International Development Cooperation AgencyAvailable from: 2018-12-27 Created: 2018-12-27 Last updated: 2021-11-04Bibliographically approved
In thesis
1. Analytical and Iterative Methods of Computing PageRank of Networks
Open this publication in new window or tab >>Analytical and Iterative Methods of Computing PageRank of Networks
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is about variants of PageRank, methods of PageRank computation and perturbation analysis of a PageRank vector as a stationary distribution of a kind of perturbed Markov chain model. 

Chapter 2 of this thesis gives closed form formulae for ordinary and lazy PageRanks for some specific simple line graphs. Different cases of changes made to the simple line graph are considered and for each case, a corresponding formula for each of the two variants of PageRank is provided.

Chapter 3 is dedicated to the exploration of relationships that exist between three known variants of PageRank: ordinary PageRank, lazy PageRank and random walk with backstep PageRank in terms of their convergence and consistency in rank scores for different graph structures with reference to PageRank parameters, the damping factor c and backstep parameter β. 

In Chapter 4, we discuss numerical methods used in solving the PageRank problem as a linear system and evaluate some stopping criteria that can be employed in such methods. 

Finally, in Chapter 5, we address the PageRank problem as a first order perturbed Markov chain problem and study the perturbation analysis for stationary distributions of Markov chains with damping component. We illustrate our results on asymptotic perturbation analysis by using different computational examples.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2020
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 325
National Category
Probability Theory and Statistics
Research subject
Mathematics/Applied Mathematics
Identifiers
urn:nbn:se:mdh:diva-51390 (URN)978-91-7485-482-4 (ISBN)
Public defence
2020-11-20, Kappa +(Zoom), Mälardalens högskola, Västerås, 10:15 (English)
Opponent
Supervisors
Available from: 2020-10-09 Created: 2020-10-08 Last updated: 2020-11-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://www.springer.com/gp/book/9783030028244

Authority records

Biganda, PitosAbola, BenardEngström, ChristopherSilvestrov, Sergei

Search in DiVA

By author/editor
Biganda, PitosAbola, BenardEngström, ChristopherSilvestrov, Sergei
By organisation
Educational Sciences and Mathematics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 228 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf