Concurrency control faults may lead to unwanted interleavings, and breach data consistency in distributed transaction systems. However, due to the unpredictable delays between sites, detecting concurrency control faults in distributed transaction systems is difficult. In this paper, we propose a methodology, relying on model-based testing and mutation testing, for designing test cases in order to detect such faults. The generated test inputs are designated delays between distributed operations, while the outputs are the occurrence of unwanted interleavings that are consequences of the concurrency control faults. We mutate the distributed transaction specification with common concurrency control faults, and model them as UPPAAL timed automata, in which designated delays are encoded as stopwatches. Test cases are generated via reachability analysis using UPPAAL Model Checker, and are selected to form an effective test suite. Our methodology can reduce redundant test cases, and find the appropriate delays to detect concurrency control faults effectively.