mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Life Cycle Cost of Heat Supply to Areas with Detached Houses: A Comparison of District Heating and Heat Pumps from an Energy System Perspective
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Högskolan Dalarna, Akademin Industri och samhälle, Energiteknik.ORCID iD: 0000-0002-3630-663X
Högskolan Dalarna, Akademin Industri och samhälle, Byggteknik.ORCID iD: 0000-0002-9943-9878
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-9230-1596
2018 (English)In: Energies, ISSN 1996-1073, E-ISSN 1996-1073, Vol. 11, no 12, article id 3266Article in journal (Refereed) Published
Abstract [en]

There are different views on whether district heating (DH) or heat pumps (HPs) is or are the best heating solution in order to reach a 100% renewable energy system. This article investigates the economic perspective, by calculating and comparing the energy system life cycle cost (LCC) for the two solutions in areas with detached houses. The LCC is calculated using Monte Carlo simulation, where all input data is varied according to predefined probability distributions. In addition to the parameter variations, 16 different scenarios are evaluated regarding the main fuel for the DH, the percentage of combined heat and power (CHP), the DH temperature level, and the type of electrical backup power. Although HP is the case with the lowest LCC for most of the scenarios, there are alternatives for each scenario in which either HP or DH has the lowest LCC. In alternative scenarios with additional electricity transmission costs, and a marginal cost perspective regarding the CHP investment, DH has the lowest LCC overall, taking into account all scenarios. The study concludes that the decision based on energy system economy on whether DH should expand into areas with detached houses must take local conditions into consideration.

Place, publisher, year, edition, pages
MDPI, 2018. Vol. 11, no 12, article id 3266
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-41408DOI: 10.3390/en11123266ISI: 000455358300027Scopus ID: 2-s2.0-85059252156OAI: oai:DiVA.org:mdh-41408DiVA, id: diva2:1265661
Available from: 2018-11-26 Created: 2018-11-26 Last updated: 2019-09-16Bibliographically approved
In thesis
1. Heating of buildings from a system perspective
Open this publication in new window or tab >>Heating of buildings from a system perspective
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy efficiency measures in buildings are considered to have great potential for reducing total energy use, and contribute to a reduced climate and environmental impact. In Sweden, however, there is a focus on bought energy, which does not always reflect the environmental and climate impact. Focusing on bought energy means that a house owner may choose an electricity based heat pump instead of district heating (DH), since heat pumps result in less bought energy compared to DH.

The energy system surrounding the buildings is affected by the choice of energy carriers used for heating. This thesis uses three different methods to study how the energy system is affected. In the first part, primary energy use has been calculated for a simulated building with different heating systems, resulting in different electricity and DH demands. The second part studies the impact on peak demand and annual consumption in the power grid and DH system due to different market shares of electricity based heating and DH. In the third part, the life cycle cost is calculated for different heating solutions from both a building and a socio-economic perspective, for 100 % renewable energy system scenarios.

The results show that the choice of energy carrier has a great influence on primary energy use. However, this depends even more on the calculation method used. Which heating solution, and thus which energy carrier, gives the lowest primary energy use varies with the different methods.

The power grid and DH system are affected by the choice of energy carrier. There is a potential to lower peak demand in the power grid by more efficient heat pumps. But an even greater potential is shown by using DH instead of electricity based heating. A larger share of DH also allows the production of more electricity with the use of combined heat and power.

The life cycle cost for different heating solutions also depends on the method used. From a building owner’s perspective, with current electricity and DH prices, electricity based heating is more economical. However, from a socio-economic perspective, with increasing electricity system costs due to a larger share of variable electricity production in a 100 % renewable system, DH becomes more economically profitable in several scenarios.

The choice of energy carrier for heating in buildings affects the energy system to a high degree. A system perspective is therefore important in local, national and global energy efficiency policies and projects.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 297
National Category
Energy Systems
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-45230 (URN)978-91-7485-439-8 (ISBN)
Public defence
2019-11-05, Sal 320, Högskolan Dalarna, Borlänge, 13:00
Opponent
Supervisors
Available from: 2019-09-18 Created: 2019-09-16 Last updated: 2019-09-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Dotzauer, Erik

Search in DiVA

By author/editor
Swing Gustafsson, MoaMyhren, Jonn AreDotzauer, Erik
By organisation
Future Energy Center
In the same journal
Energies
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf