Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt198",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1017",{id:"formSmash:j_idt1017",widgetVar:"widget_formSmash_j_idt1017",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full textScopus
#### Search in DiVA

##### By author/editor

Lundengård, KarlRancic, MilicaSilvestrov, SergeiSuleiman, Samya
##### By organisation

Educational Sciences and Mathematics
On the subject

Probability Theory and StatisticsComputational Mathematics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1223",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[5,5,11,5,4,19,30,11,28,6]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:40,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1252088'}],ticks:["Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24","Sep -24","Oct -24","Nov -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 568 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1316",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt179",{id:"formSmash:upper:j_idt179",widgetVar:"widget_formSmash_upper_j_idt179",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt180_j_idt182",{id:"formSmash:upper:j_idt180:j_idt182",widgetVar:"widget_formSmash_upper_j_idt180_j_idt182",target:"formSmash:upper:j_idt180:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Application of a power-exponential function-based model to mortality rates forecastingPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt262",{id:"formSmash:j_idt262",widgetVar:"widget_formSmash_j_idt262",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2019 (English)In: Communications in Statistics: Case Studies, Data Analysis and Applications, E-ISSN 2373-7484, Vol. 5, no 1, p. 3-10Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2019. Vol. 5, no 1, p. 3-10
##### Keywords [en]

mortality rates modeling, power-exponential function, nonlinear curve fitting, Lee-Carter method
##### National Category

Probability Theory and Statistics Computational Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-41090DOI: 10.1080/23737484.2019.1578705Scopus ID: 2-s2.0-85080110292ISBN: 978-618-5180-27-0 (print)ISBN: 978-618-5180-29-4 (electronic)OAI: oai:DiVA.org:mdh-41090DiVA, id: diva2:1252088
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt501",{id:"formSmash:j_idt501",widgetVar:"widget_formSmash_j_idt501",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt507",{id:"formSmash:j_idt507",widgetVar:"widget_formSmash_j_idt507",multiple:true});
##### Funder

Sida - Swedish International Development Cooperation Agency
##### Note

##### In thesis

There are many models for mortality rates. A well-known problem that complicates modeling of human mortality rates is the “accident hump” occurring in early adulthood. Here, two models of mortality rate based on power-exponential functions are presented and compared to a few other models. The models will be fitted to known data of measured death rates from several different countries using numerical techniques for curve-fitting with the nonlinear least-squares method. The properties of the model with respect to forecasting with the Lee–Carter method will be discussed.

Originally presented at the SMTDA2018 conference.

Available from: 2018-09-30 Created: 2018-09-30 Last updated: 2020-10-01Bibliographically approved1. Electrostatic Discharge Currents Representation using the Multi-Peaked Analytically Extended Function by Interpolation on a D-Optimal Design$(function(){PrimeFaces.cw("OverlayPanel","overlay1329412",{id:"formSmash:j_idt792:0:j_idt796",widgetVar:"overlay1329412",target:"formSmash:j_idt792:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Extreme points of the Vandermonde determinant and phenomenological modelling with power exponential functions$(function(){PrimeFaces.cw("OverlayPanel","overlay1329454",{id:"formSmash:j_idt792:1:j_idt796",widgetVar:"overlay1329454",target:"formSmash:j_idt792:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1245",{id:"formSmash:j_idt1245",widgetVar:"widget_formSmash_j_idt1245",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1298",{id:"formSmash:lower:j_idt1298",widgetVar:"widget_formSmash_lower_j_idt1298",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1299_j_idt1301",{id:"formSmash:lower:j_idt1299:j_idt1301",widgetVar:"widget_formSmash_lower_j_idt1299_j_idt1301",target:"formSmash:lower:j_idt1299:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});