https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A design metric for safety assessment of industrial robot design suitable for power- and force-limited collaborative operation
Mälardalen University, School of Innovation, Design and Engineering, Innovation and Product Realisation.
ABB Corp Res Ctr Germany, Ladenburg, Germany..
ABB Corp Res Ctr, Dept Automat Technol, Vasteras, Sweden..
2018 (English)In: INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, ISSN 2366-5971, Vol. 2, no 2, p. 226-234Article in journal (Refereed) Published
Abstract [en]

This research presents a novel design metric based on maximum power flux density for the assessment of the severity of a transient physical contact between a robot manipulator and a human body region. Such incidental transient contact can occur in the course of a collaborative application of the power- and force-limiting type. The proposed metric is intended for the design and development of the robot manipulator as well as for the design of manufacturing applications. Such safety metric can also aid in controlling the robot's speeds during manufacturing operations by carrying out rapid risk assessments of impending collisions that could arise due to the proximity to the human co-worker. Furthermore, this study contributes by expressing the physical impact between the robot and the human body region as a linear spring-damper model. The influence of the restitution coefficient and the elasticity of the human tissues on the contact duration and contact area during the collision is analysed. With the demonstrated analysis model, the dependence of the power flux density with respect to the robot's effective mass, speed, and geometrical and damping coefficients during the human-industrial robot manipulator collision process is investigated.

Place, publisher, year, edition, pages
SPRINGER , 2018. Vol. 2, no 2, p. 226-234
Keywords [en]
Collaborative robots, Safety metrics, Impact modelling, Dynamic modelling
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-40525DOI: 10.1007/s41315-018-0055-9ISI: 000441194000008PubMedID: 29876516Scopus ID: 2-s2.0-85071514781OAI: oai:DiVA.org:mdh-40525DiVA, id: diva2:1241225
Projects
INNOFACTURE - innovative manufacturing developmentAvailable from: 2018-08-23 Created: 2018-08-23 Last updated: 2022-04-22Bibliographically approved
In thesis
1. Evaluation of Industrial Robot Mechanical Systems for Applications that Require Human-Robot Collaboration
Open this publication in new window or tab >>Evaluation of Industrial Robot Mechanical Systems for Applications that Require Human-Robot Collaboration
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In order to develop robot automation for new market sectors associated with short product lifetimes and frequent production change overs, industrial robots must exhibit a new level of flexibility and versatility. This situation has led to the growing interest in making humans and robots share their working environments and sometimes even allowing direct physical contact between the two in order to make them work cooperatively on the same task by enabling human-industrial robot collaboration (HIRC). In this context, it is very important to evaluate both the performance and the inherent safety characteristics associated with a given industrial robot manipulator system in HIRC workstation during the design and development stages.

This necessitates a need to formulate evaluation methods with relevant design metrics and quantitative methods based on simulations, which can support the robot mechanical designer to correlate the task-, and safety- based performance characteristics of industrial robot mechanical system for HIRC applications. The research objective perused in this research aiming to address this need.

This research project adopts research methodology based on action-reflection approach in a collaborative research setting between academia and industry. The design knowledge is gained on how to evaluate a specific industrial robot mechanical system design for usability in a specific collaborative application with humans. This is done by carrying out simulation-based evaluation tasks to measure and subsequently analyze the task-, and safety- based performance characteristics of industrial robot mechanical systems. Based on the acquired knowledge, an evaluation methodology with relevant design metrics and simulation modelling approaches is proposed in this research which integrates simulation based design processes of both Human-industrial robot workstation as well as robot mechanical system in order to make a well-grounded assessment on whether the robot mechanical system fulfills the task- and safety-based performance requirements corresponding to a specific collaborative application.

Place, publisher, year, edition, pages
Eskilstuna: Mälardalen University, 2020
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 308
National Category
Mechanical Engineering
Research subject
Innovation and Design
Identifiers
urn:nbn:se:mdh:diva-46609 (URN)978-91-7485-457-2 (ISBN)
Public defence
2020-02-21, Filen, Mälardalens högskola, Eskilstuna, 10:15 (English)
Opponent
Supervisors
Projects
INNOFACTURE - innovative manufacturing development
Available from: 2019-12-20 Created: 2019-12-20 Last updated: 2020-10-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Reddy Vemula, Bhanoday

Search in DiVA

By author/editor
Reddy Vemula, Bhanoday
By organisation
Innovation and Product Realisation
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 986 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf