mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Canonical Model of the Primary Visual Cortex
Mälardalen University, Department of Computer Science and Electronics.ORCID iD: 0000-0002-5224-8302
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [sv]

Ny datormodell visar hur hjärnan behandlar information

Baran Çürüklüs forskning handlar om att förstå hur syncentret i hjärnan fungerar. Detta är viktigt för forskningen inom neurovetenskap och artificiell intelligens.

Under de senaste decennierna har hjärnforskningen visat att olika centra av hjärnbarken hos en och samma art har liknande struktur och att det finns stora likheter mellan olika arters hjärnbark. Dessa resultat tyder också på att nerv cellerna använder ett universellt språk när de kommunicerar med varandra. Dessutom verkar det finns generella regler som kan förklara hur hjärnan utvecklas och får sin slutliga form. En direkt konsekvens av dessa hypoteser är att Baran Çürüklüs forskning på syncentret kan ha stor inverkan på forskning på andra delar av hjärnan.

Syncentret är den del av hjärnbarken som tar emot de inkommande signaler från ögat. Syncentret är en mycket viktig del av hjärnan och innehåller uppskattningsvis 40 % av hjärnbarkens nerv celler. Baran Çürüklü har i detalj kartlagt svarsegenskaperna hos nerv cellerna i den primära visuella hjärnbarken under hjärnans utvecklingsförlopp. Detta arbete bygger på upptäckten av Hubel och Wiesel om att nerv cellerna i den primära visuella hjärnbarken reagerar på kontrastkanter. Deras forskning har resulterat i feedforward modellen som är en viktig del av arbetet som har gett dem Nobelpriset i fysiologi/medicin (1981).

Trots att denna modell har varit den mest refererade modellen i litteraturen så återstår fortfarande mycket forskning för att förstå nerv cellernas svarsegenskaper. Baran Çürüklüs modell kompletterar feedforward-modellen genom att bl.a. förklara hur hjärnan kan känna igen former under olika kontrastförhållanden. Modellen visar också hur omgivningen inverkar på syncentrets utvecklingsförlopp.

Place, publisher, year, edition, pages
2005. , 66 p.
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 12
National Category
Computer Science
Research subject
Datavetenskap
Identifiers
URN: urn:nbn:se:mdh:diva-48ISBN: 91-88834-51-4 (print)OAI: oai:DiVA.org:mdh-48DiVA: diva2:121012
Public defence
2005-04-26, Zeta, Rosenhill, Västerås, 14:00
Opponent
Supervisors
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2013-12-03
List of papers
1. Spike and Burst Synchronization in a Detailed Cortical Network Model with I-F Neurons
Open this publication in new window or tab >>Spike and Burst Synchronization in a Detailed Cortical Network Model with I-F Neurons
2001 (English)In: Artificial Neural Networks — ICANN 2001, 2001, 1095-1102 p.Conference paper, Published paper (Other academic)
Abstract [en]

Previous studies have suggested that synchronized firing is a prominent feature of cortical processing. Simplified network models have replicated such phenomena. Here we study to what extent these results are robust when more biological detail is introduced. A biologically plausible network model of layer of tree shrew primary visual cortex with a columnar architecture and realistic values on unit adaptation, connectivity patterns, axonal delays and synaptic strengths was investigated. A drifting grating stimulus provided afferent noisy input. It is demonstrated that under certain conditions, spike and burst synchronized activity between neurons, situated in different minicolumns, may occur.

Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 2130
National Category
Computer Systems
Identifiers
urn:nbn:se:mdh:diva-4147 (URN)10.1007/3-540-44668-0_152 (DOI)000173024600151 ()2-s2.0-84959010930 (Scopus ID)978-3-540-42486-4 (ISBN)
Conference
Artificial Neural Networks — ICANN 2001, International Conference Vienna, Austria, August 21–25, 2001
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2016-05-17Bibliographically approved
2. An Abstract Model of a Cortical Hypercolumn
Open this publication in new window or tab >>An Abstract Model of a Cortical Hypercolumn
2002 (English)In: ICONIP'02: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING: COMPUTATIONAL INTELLIGENCE FOR THE E-AGE, 2002, 80-85 p.Conference paper, Published paper (Other academic)
Abstract [en]

An abstract model of a cortical hypercolumn is presented. This model could replicate experimental findings relating to the orientation tuning mechanism in the primary visual cortex. Properties of the orientation selective cells in the primary visual cortex like, contrast-invariance and response saturation were demonstrated in simulations. We hypothesize that broadly tuned inhibition and local excitatory connections are sufficient for achieving this behavior. We have shown that the local intracortical connectivity of the model is to some extent biologically plausible.

National Category
Computer Systems
Identifiers
urn:nbn:se:mdh:diva-4148 (URN)000182832400018 ()9810475241 (ISBN)
Conference
9th International Conference on Neural Information Processing, SINGAPORE, SINGAPORE, NOV 18-22, 2002
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2015-07-10Bibliographically approved
3. A Model of the Summation Pools within the Layer 4 (Area 17)
Open this publication in new window or tab >>A Model of the Summation Pools within the Layer 4 (Area 17)
2005 (English)In: Neurocomputing, ISSN 0925-2312, Vol. SPEC. ISS, 167-172 p.Article in journal (Other academic) Published
Abstract [en]

We propose a developmental model of the summation pools within the layer 4. The model is based on the modular structure of the neocortex and captures some of the known properties of layer 4. Connections between the orientation minicolumns are developed during exposure to visual input. Excitatory local connections are dense and biased towards the iso-orientation domain. Excitatory long-range connections are sparse and target all orientation domains equally. Inhibition is local. The summation pools are elongated along the orientation axis. These summation pools can facilitate weak and poorly tuned LGN input and explain improved visibility as an effect of enlargement of a stimulus.

National Category
Computer Science
Identifiers
urn:nbn:se:mdh:diva-4149 (URN)10.1016/j.neucom.2004.10.004 (DOI)000229663600022 ()2-s2.0-18144382319 (Scopus ID)
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2015-07-27Bibliographically approved
4. Quantitative Assessment of the Local and Long-Range Horizontal Connections within the Striate Cortex
Open this publication in new window or tab >>Quantitative Assessment of the Local and Long-Range Horizontal Connections within the Striate Cortex
2003 (English)In: IEEE Proceedings of the Computational Intelligence, Robotics and Autonomous System, 2003Conference paper, Published paper (Other academic)
Identifiers
urn:nbn:se:mdh:diva-4150 (URN)
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2015-07-27Bibliographically approved
5. On the development and functional roles of the horizontal connections within the primary visual cortex (V1)
Open this publication in new window or tab >>On the development and functional roles of the horizontal connections within the primary visual cortex (V1)
(English)Manuscript (Other academic)
Identifiers
urn:nbn:se:mdh:diva-4151 (URN)
Available from: 2005-11-15 Created: 2005-11-15 Last updated: 2013-12-03Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Curuklu, Baran
By organisation
Department of Computer Science and Electronics
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

Total: 440 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf