Timing models include crucial information that is required by the timing analysis engines to verify timing behavior of vehicular embedded systems. The extraction of this information from these systems is challenging due to the software complexity, distribution of functionality and multiple criticality levels. To meet this challenge, this paper presents a comprehensive end-to-end timing model for multi-criticality vehicular distributed embedded systems. The model is comprehensive, in the sense that it captures detailed timing information and supports various types of real-time network protocols used in the vehicular domain. Moreover, the paper provides a method to extract these models from the software architectures of these systems. The proposed model is aligned with the component models and standards in the vehicular domain that support the pipe-and-filter communication among their basic building elements.