Adaptive autonomy (AA) is a behavior that allows agents to change their autonomy levels by reasoning on their circumstances. Previous work has modeled AA through the willingness to interact, composed of willingness to ask and give assistance. The aim of this paper is to investigate, through computer simulations, the behavior of agents given the proposed computational model with respect to different initial configurations, and level of dependencies between agents. Dependency refers to the need for help that one agent has. Such need can be fulfilled by deciding to depend on other agents. Results show that, firstly, agents whose willingness to interact changes during run-time perform better compared to those with static willingness parameters, i.e. willingness with fixed values. Secondly, two strategies for updating the willingness are compared, (i) the same fixed value is updated on each interaction, (ii) update is done on the previous calculated value. The maximum number of completed tasks which need assistance is achieved for (i), given specific initial configurations.