https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mesophilic and thermophilic co-digestion of microalgal-based activated sludge and primary sludge
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-0861-6438
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-5014-3275
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0003-3311-9465
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
(English)Manuscript (preprint) (Other academic)
National Category
Environmental Sciences
Identifiers
URN: urn:nbn:se:mdh:diva-39168OAI: oai:DiVA.org:mdh-39168DiVA, id: diva2:1204455
Available from: 2018-05-08 Created: 2018-05-08 Last updated: 2023-11-22Bibliographically approved
In thesis
1. Co-digestion of microalgae and sewage sludge - A feasibility study for municipal wastewater treatment plants
Open this publication in new window or tab >>Co-digestion of microalgae and sewage sludge - A feasibility study for municipal wastewater treatment plants
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increased emissions of anthropogenic greenhouse gases over the last 100 years is the reason for the acceleration in the greenhouse effect, which has led to an increase of the globally averaged combined land and ocean surface temperature of 0.85 °C between 1880 and 2012. A small fraction of the increased anthropogenic greenhouse gases originates from municipal wastewater treatment plants (WWTPs).

This doctoral thesis was part of a larger investigation of using an alternative biological treatment based on the symbiosis of microalgae and bacteria (MAAS-process (microalgae and activated sludge)). This solution could be more energy efficient and potentially consume carbon dioxide from fossil combustion processes and also directly capture carbon dioxide from the atmosphere and thereby reduce the addition of anthropogenic greenhouse gases to the air.

 The objective of the thesis was to explore the effects when the microalgae-derived biomass from the biological treatment were co-digested with sewage sludge. The results from these experimental studies were then used to evaluate the effects on a system level when implementing microalgae in municipal WWTP.

 Microalgae grown from a synthetic medium improved the methane yield with up to 23% in mesophilic conditions when part of the sewage sludge was replaced by the microalgae. The microalgae grown from municipal wastewater showed no synergetic effect.

 In the semi-continuous experiments the methane yield was slightly reduced when implementing the microalgae. Furthermore the digestibility of the co-digestion between sewage sludge and microalgae were lower compared to the digestion of sewage sludge.

 The digestates containing microalgal substrate had higher heavy metals content than digestates containing only sewage sludge. This could have a negative effect on the potential to use this digestate on arable land in future, due to strict limits from the authorities.  Filterability measurements indicated that the addition of microalgae enhanced the dewaterability of the digested sludge and lowered the demand for polyelectrolyte significantly.

 When a hypothetical MAAS-process replaced a conventional ASP-process the amount of feedstock of biomass increased significantly due to the increased production from the autotrophic microalgae. This increased the biogas production by 66-210% and reduced the heavy metal concentration in the digestate due to a dilution effect from the increased biomass production.

 The thesis demonstrates that microalgae in combination with bacteria from a MAAS-process can be a realistic alternative feedstock to WAS in the anaerobic digestion at a municipal WWTP. A few drawbacks need to be considered when choosing a MAAS-process as biological treatment.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2018. p. 96
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 262
Keywords
Microalgae, Anaerobic digestion, dewaterability, BMP-experiments
National Category
Water Treatment
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-39154 (URN)978-91-7485-386-5 (ISBN)
Public defence
2018-06-18, Paros, Mälardalens högskola, Västerås, 13:00 (English)
Opponent
Supervisors
Funder
Knowledge Foundation
Available from: 2018-05-07 Created: 2018-05-07 Last updated: 2018-06-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Olsson, JesperSchwede, SebastianNehrenheim, EmmaThorin, Eva

Search in DiVA

By author/editor
Olsson, JesperSchwede, SebastianNehrenheim, EmmaThorin, Eva
By organisation
Future Energy Center
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 185 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf