mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A remote health monitoring system featuring relational databases
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-2457-3079
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-5590-0784
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-2419-2735
Show others and affiliations
2017 (English)In: Medicinteknikdagarna 2017 MTD 2017, Västerås, Sweden, 2017Conference paper, Published paper (Refereed)
Abstract [en]

Remote health monitoring (RHM) through the use of wearable wireless sensors, has drawn a lot of attention from academia and industry in the last decade [1,2]. The aging population, increasing cost of health-care, and lack of human resources in healthcare, are the three key motivators for the development of RHM [3,4]. The RHM systems should reduce health care costs and improve care quality. How to ensure a reliable and secure data collection from sensor devices to stake holders in RHM systems, is an open research question. The most established data storage technology that can ensure the security and privacy of data is the relational database management systems (RDBMSs). Besides security, RDBMSs provide a number of additional convenient features like querying the data, indexing, backups, replication, but are however in general slower than storing the data directly in a file system. Presented is a RHM system with a RDBMS in its core. The system was developed for the needs of ESS-H research profile [5] at Mälardalen University, Sweden. We also present a comprehensive system design which covers all the needs for the RHM application. The system is composed of four main components: (I) Shimmer sensors [6], (II) data acquisition layer (LabVIEW or C#.NET program), (III) RDBMS, and (IV) web service and web interface. The system communicates with the Shimmer sensors over Bluetooth and collects measurements in a relational database, either through a C#.NET or a LabVIEW program. The web service and a web interface are both written in PHP and are running on the Apache HTTP Server. The end-user is able to observe either real-time data (i.e. with insignificant delay) or processed historical data on any web browser. The advantage of using the web interface instead of a desktop application is that it makes the presentation layer easily accessible and platform independent. The RDBMSs provide data security and privacy in addition to other convenient features. Therefore, it is beneficial to incorporate RDBMSs in RHM systems. However, the RDBMSs provide no solution for security and privacy issues in wireless communication which is another research problem.

Place, publisher, year, edition, pages
Västerås, Sweden, 2017.
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-38649OAI: oai:DiVA.org:mdh-38649DiVA, id: diva2:1187063
Conference
Medicinteknikdagarna 2017 MTD 2017, 09 Oct 2017, Västerås, Sweden
Projects
ESS-H - Embedded Sensor Systems for Health Research ProfileAvailable from: 2018-03-02 Created: 2018-03-02 Last updated: 2018-03-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Petrovic, NikolaFotouhi, HosseinTomasic, IvanBjörkman, MatsLindén, Maria

Search in DiVA

By author/editor
Petrovic, NikolaFotouhi, HosseinTomasic, IvanBjörkman, MatsLindén, Maria
By organisation
Embedded Systems
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 132 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf