mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Air-Gap Heat Transfer in Rotating Electrical Machines: A Parametric Study
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. ABB AB, Corporate Research, Västerås, Sweden.ORCID iD: 0000-0002-9490-9703
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. ABB AB, Corporate Research, Västerås, Sweden.ORCID iD: 0000-0001-8849-7661
2017 (English)In: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 142, p. 4176-4181Article in journal (Refereed) Published
Abstract [en]

More than half of all electrical energy is consumed by motors and generators in an industrialized country. About 5-25% of this energy is lost and converted to heat. This heat produced by the losses has adverse effect on the lifetime and performance of a machine. A machine has to be operated at a given temperature to achieve maximum efficiency, therefore heat transfer study of machines is of special interest to rotating machines manufacturers. In this paper we investigate the heat transfer in the air-gap between the rotor and the stator of a simplified induction motor using Computational Fluid Dynamics. We consider three different air-gap widths and rotation speeds to explore the change in air-gap heat transfer when changing the air-gap width and the rotation speed. The simulated average heat transfer coefficients for all the models are in good agreement with the correlations from published literature. The Taylor-Couette vortical flow pattern is observed in the air-gap in our simulation results for the models with large air-gaps. The numerical results show that the presence of Taylor-Couette vortices in the air-gap enhance the heat transfer. The heat transfer coefficient increases with the increase in the rotation speed and decreases with the decrease in the air-gap width. 

Place, publisher, year, edition, pages
Elsevier Ltd , 2017. Vol. 142, p. 4176-4181
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-38716DOI: 10.1016/j.egypro.2017.12.343Scopus ID: 2-s2.0-85041542591OAI: oai:DiVA.org:mdh-38716DiVA, id: diva2:1186819
Available from: 2018-03-01 Created: 2018-03-01 Last updated: 2018-03-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Hosain, Md LokmanBel Fdhila, Rebei

Search in DiVA

By author/editor
Hosain, Md LokmanBel Fdhila, Rebei
By organisation
Future Energy Center
In the same journal
Energy Procedia
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf