This study aims to describe a design methodology for supersonic rotor blade geometry, depending on the working fluid, for a low enthalpy Organic Rankine Cycle (ORC) system. Thus, the working fluid is a non-ideal gas with low impact of real flow effects. An innovate algorithm was developed, in order to generate the two-dimensional geometry of the rotor blade, for various working media. A design method, based on the principle of vortex flow field, was used for the blading design and, for the design of supersonic blades, the method of characteristics was selected as the most optimum. The geometry was tested using a commercial simulation software that uses a pressure-based solving algorithm named SIMPLE (Semi-implicit Method for Pressure-Linked Equations). Key advantages of this procedure are both its simplicity and precision of the results.
The above procedure was applied for three working fluids, indicatively isobutane (R-600a), tetrafluroethane (R134a) and a mixture of 15% isobutane – 85% isopentane. Considering the ratio of specific heat capacities as constant, which is a realistic assumption for the operating conditions of these systems, the algorithm produces three different blade geometries. Results comparison indicates that every working fluid, for the same operating conditions and for the same design options, has a significantly differentiated geometry of the two-dimensional blade. Finally, the calculated total to total isentropic efficiency, for these rotor blades, is almost 92%.