https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experience Report: Evaluating Fault Detection Effectiveness and Resource Efficiency of the Architecture Quality Assurance Framework and Tool
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-1844-7874
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-0904-3712
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-4040-3480
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-0757-822X
Show others and affiliations
2017 (English)In: Proceedings - International Symposium on Software Reliability Engineering, ISSRE. Volume 2017, 2017, p. 271-281, article id 8109093Conference paper, Published paper (Refereed)
Abstract [en]

The Architecture Quality Assurance Framework (AQAF) is a theory developed to provide a holistic and formal verification process for architectural engineering of critical embedded systems. AQAF encompasses integrated architectural model checking, model-based testing, and selective regression verification techniques to achieve this goal. The Architecture Quality Assurance Tool (AQAT) implements the theory of AQAF and enables automated application of the framework. In this paper, we present an evaluation of AQAT and the underlying AQAF theory by means of an industrial case study, where resource efficiency and fault detection effectiveness are the targeted properties of evaluation. The method of fault injection is utilized to guarantee coverage of fault types and to generate a data sample size adequate for statistical analysis. We discovered important areas of improvement in this study, which required further development of the framework before satisfactory results could be achieved. The final results present a 100% fault detection rate at the design level, a 98.5% fault detection rate at the implementation level, and an average increased efficiency of 6.4% with the aid of the selective regression verification technique.

Place, publisher, year, edition, pages
2017. p. 271-281, article id 8109093
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-37457DOI: 10.1109/ISSRE.2017.31ISI: 000426939700026Scopus ID: 2-s2.0-85040780151ISBN: 9781538609415 (electronic)OAI: oai:DiVA.org:mdh-37457DiVA, id: diva2:1166347
Conference
28th International Symposium on Software Reliability Engineering (ISSRE), Toulouse, France, 2017
Available from: 2017-12-14 Created: 2017-12-14 Last updated: 2018-07-25Bibliographically approved
In thesis
1. Quality Assurance for Dependable Embedded Systems
Open this publication in new window or tab >>Quality Assurance for Dependable Embedded Systems
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Architectural engineering of embedded computer systems comprehensively affects both the development processes and the abilities of the systems. Rigorous and holistic verification of architectural engineering is consequently essential in the development of safety-critical and mission-critical embedded systems, such as computer systems within aviation, automotive, and railway transportation, where even minor architectural defects may cause substantial cost and devastating harm. The increasing complexity of embedded systems renders this challenge unmanageable without the support of automated methods of verification, to reduce the cost of labor and the risk of human error.

The contribution of this thesis is an Architecture Quality Assurance Framework (AQAF) and a corresponding tool support, the Architecture Quality Assurance Tool (AQAT). AQAF provides a rigorous, holistic, and automated solution to the verification of critical embedded systems architectural engineering, from requirements analysis and design to implementation and maintenance. A rigorous and automated verification across the development process is achieved through the adaption and integration of formal methods to architectural engineering. The framework includes an architectural model checking technique for the detection of design faults, an architectural model-based test suite generation technique for the detection of implementation faults, and an architectural selective regression verification technique for an efficient detection of faults introduced by maintenance modifications.

An integrated solution provides traceability and coherency between the verification processes and the different artifacts under analysis, which is essential for obtaining reliable results, for meeting certification provisions, and for performing impact analyses of maintenance modifications. The Architecture Quality Assurance Tool (AQAT) implements the theory of AQAF and enables an effortless adoption into industrial practices. Empirical results from an industrial study present a high fault detection rate at both the design level and the implementation level as well as an efficient selective regression verification process. Furthermore, the results of a scalability evaluation show that the solution is scalable to complex many-core embedded systems with multithreading.

Place, publisher, year, edition, pages
Västerås: Mälardalen University Press, 2018
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 252
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-37458 (URN)978-91-7485-372-8 (ISBN)
Public defence
2018-01-26, Gamma, Mälardalens högskola, Västerås, 13:00 (English)
Opponent
Supervisors
Available from: 2017-12-18 Created: 2017-12-15 Last updated: 2018-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Johnsen, AndreasLundqvist, KristinaPettersson, PaulHänninen, Kaj

Search in DiVA

By author/editor
Johnsen, AndreasLundqvist, KristinaPettersson, PaulHänninen, Kaj
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf