Open this publication in new window or tab >>2018 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]
In most waste management industries, waste is separated into different fractions, each of which is treated with suitable processes. Established technologies such as waste combustion for combined heat and power (CHP) production and biomethane production through anaerobic digestion (AD) of biodegradable waste work fine as standalone processes. However, specific issues are associated with these established standalone waste-to-energy (WtE) processes. For example, traditional CHP plants have high overall energy efficiencies, but lower electrical efficiencies, and their heat outputs are dependent on local demand and seasonal variations. Similarly, biodegradable waste typically sent for AD contains lignocellulosic or green waste. Due to the lower biodegradability of lignocellulosic waste, only a proportion is sent for digestion, while the rest is incinerated, increasing transportation costs. Increased benefits from the perspective of energy and economics can be achieved by integrating new WtE processes with existing technologies.
This thesis aims to design energy-efficient and profitable biorefineries by integrating existing waste management facilities with the thermochemical treatment of waste. A systems analysis of two process integration concepts has been studied through modelling and simulation. The first analysis is of the process integration of gasification with existing CHP plants, and the second is the process integration of pyrolysis with an existing AD plant. For integration of gasification with a CHP plant, reasonable operational limits of the CHP plant have been assessed and compared by integrating three types of gasifier, and the most technically and economically integrated processes have been identified. In the case of integration of pyrolysis with AD, a new process configuration is presented that couples the AD of biodegradable waste with the pyrolysis of lignocellulosic waste. The biochar obtained from pyrolysis is added to a digester as an adsorbent to increase the biomethane production. In addition, the vapors produced by the pyrolysis process are converted to biomethane. Two different conversion processes are compared to convert pyrolysis vapors to biomethane, catalytic methanation and biomethanation.
The results demonstrate that process integration can contribute to reducing the cost of biomethane production through integration of gasification and pyrolysis with CHP and AD, respectively. The process integration can also utilize infrastructure and products from existing industries and increase the overall process efficiencies. Of the gasifiers studied, the dual fluidized bed gasifier produces more biomethane than the circulating bed and entrained flow gasifiers when retrofitted with an existing CHP plant with up to 85% efficiency. The CHP–gasification integration is capable of producing more biomethane during low heat demand seasons without disturbing the operation of the CHP operation. A gasifier with a flexible capacity can be integrated with the CHP to produce biomethane without affecting the heat production of the CHP. From an economic perspective, the dual-bed gasifier requires lower capital investment and is therefore more profitable, because it requires less equipment than the circulating fluidized and entrained flow gasifiers. The integration of pyrolysis with the AD process can almost double biomethane production comparison with standalone AD process, increasing efficiency to 67%. The integration is an attractive investment when catalytic methanation of syngas is used rather than biomethanation of syngas. The catalytic methanation route has an economic rate of return of 16%, with a six-year payback period.
The main conclusion drawn from this thesis is that production of biomethane can be enhanced through process integration of gasification with the CHP plant and of pyrolysis with AD. However, the increase in biomethane production also increases the demand for waste at the integrated biorefinery. Hence, the capacity of the gasifier and pyrolysis process will be decisive in determining the level of integration of the biorefineries.
Abstract [sv]
I de flesta avfallshanteringsanläggningarna separeras avfallet i olika fraktioner och behandlas i lämpliga processer. Etablerade tekniker som förbränning av avfall för kombinerad el- och värmeproduktion och produktion av biometan genom rötning (AD) av biologiskt nedbrytbart avfall fungerar bra som fristående processer. Det finns dock några nackdelar med de etablerade processerna för omvandling av avfall till energi (WtE), t ex har traditionella kraftvärmeverk höga energiverkningsgrad, men lägre elverkningsgrad och värmproduktionen är beroende av lokal efterfrågan och säsongsvariationer. På liknande sätt innehåller biologiskt nedbrytbart avfall som används till rötning, lignocellulosa eller eller så kallat grönavfall. På grund av lägre biologisknedbrytningav avfall med lignocellulos används endast en del av detta för rötning medan resten förbränns, vilket ökar transportkostnaderna. Större fördelar med avseende på energi och ekonomi kan uppnås genom att integrera de nya WtE-processerna med befintlig teknik.
Avhandlingen syftar till att utforma energieffektiva och kostnadseffektiva bioraffinaderier genom att integrera befintliga avfallshanteringsanläggningar med termokemisk behandling av avfall. En systemanalys av två processintegrationskoncept har studerats genom modellering och simulering. En är processintegrering av förgasning med befintliga kraftverk, och den andra är integrationen av pyrolys med befintliga rötningsanläggningar. För integration av kraftvärme och förgasning utvärderas rimliga gränser för sdriften av en anläggning genom att jämföra integreration av tre typer av förgasare och den tekniskt och ekonomiskt bästa integrerade processen identifieras. För integrering av pyrolys och rötning presenteras en ny processkonfiguration som kopplar rötning av biologiskt nedbrytbart avfall med pyrolys av avfall som innehåller lignocellulosl. Biokol från pyrolysen tillsätts rötkammaren som en adsorbent för att öka biometanhalten. Dessutom omvandlas de ångor som framställs genom pyrolysprocessen till biometan. Två olika omvandlingsprocesser för att konvertera pyrolysångor till bio-metan jämförs, dvs katalytisk metanisering och biometanisering.
Resultaten visar att processintegration kan bidra till att minska produktionskostnaderna för biometan genom förgasning och pyrolys genom integration med kraftvärme (CHP) respektive rötning (AD). Processintegrationen kan också utnyttja infrastrukturen och produkterna från befintliga industrier och öka den totala processeffektiviteten. Av alla undersökta förgasare producerar indirekt förgasning mer biometan jämfört med cirkulerande bädd och flödesförgasare när den integreras med ett befintligt kraftvärmeverk, med upp till 85 % verkningsgrad. Integreringen av kraftvärme och förgasning kan producera mer biometan under säsonger med låg efterfrågan av värme, utan att störa kraftvärme-driften. När det gäller förgasningsstorleken kan förgasarens flexibla kapacitet integreras med kraftvärme för att producera biometan utan att ändra den årliga värmeproduktionen. Ur ett ekonomiskt perspektiv kräver indirekta förgasaren lägre kapitalinvesteringar och ger högre intäkter på grund av färre utrustningsdelar än cirkulerande fluidiserad förgasare och flödesförgare. Integreringen av pyrolys med rötnings-processen kan nästan dubbla bio-metanproduktionen och öka verkningsgraden till 67 %. Integrationen är attraktiv för investering när katalytisk metanisering används istället för biometanisering av syngas. Katalytisk metanisering ger en avkastning på 16 %, med sex års återbetlaningstid.
Den viktigaste slutsatsen från denna avhandling är att produktionen av bio-metan kan förbättras genom processintegration av förgasning med kraftvärm och pyrolys med rötning. Ökningen av bio-metanproduktion ökar emellertid även efterfrågan på avfall till integrerade bioraffinaderier. Därför kommer storleken av förgasare och pyrolysprocessen att vara avgörande för att bestämma integrationsnivån av de studerade bioraffinaderierna.
Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2018
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 276
Keywords
polygeneration, process integration, integrated biorefineries, biomethane
National Category
Energy Systems Chemical Process Engineering
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-41280 (URN)978-91-7485-416-9 (ISBN)
Presentation
2018-12-06, Beta, Mälardalens högskola, Västerås, 09:00 (English)
Opponent
Supervisors
2018-11-022018-11-022018-11-12Bibliographically approved