mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Flexible Components for Development of Embedded Systems with GPUs
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-9794-5497
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-8461-0230
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-0165-3743
2017 (English)In: 24th Asia-Pacific Software Engineering Conference APSEC 2017, 2017, p. 219-228Conference paper, Published paper (Refereed)
Abstract [en]

Today, embedded systems incorporate GPUs through a multitude of different architectures. When it comes to the development of these systems with GPUs, component-based development is ill-equipped as it does not provide support for GPUs. Instead, the component developer needs to encapsulate inside the component, besides functionality, settings and environment information that are specific to a particular GPU architecture. This binds the component this GPU architecture. Using these hardware-specific components characterized by restricted reusability, the system developer is confined to a limited design space which may negatively impact the overall system feasibility. 

In this paper, we introduce the concept of flexible components, which are components that can be executed indifferently on CPU or GPU, regardless of the architecture. Using flexible components, component developers are relieved from the side development activities (e.g., environment information) which are automatically handled by component-level mechanisms. To enhance component communications, connection elements (i.e., adapters) are generated to handle component data transmission, taking in consideration the platform characteristics. Finally, our proposed solution is evaluated by using flexible components to implement the vision system of an underwater robot, and execute it on three platforms with different GPU architectures.

Place, publisher, year, edition, pages
2017. p. 219-228
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-37070DOI: 10.1109/APSEC.2017.28ISI: 000428733800023ISBN: 978-1-5386-3681-7 (print)OAI: oai:DiVA.org:mdh-37070DiVA, id: diva2:1153843
Conference
24th Asia-Pacific Software Engineering Conference APSEC 2017, 04 Dec 2017, Nanjing, China
Projects
RALF3 - Software for Embedded High Performance Architectures
Available from: 2017-10-31 Created: 2017-10-31 Last updated: 2018-04-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Campeanu, GabrielCarlson, JanSentilles, Séverine

Search in DiVA

By author/editor
Campeanu, GabrielCarlson, JanSentilles, Séverine
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf