Today, embedded systems incorporate GPUs through a multitude of different architectures. When it comes to the development of these systems with GPUs, component-based development is ill-equipped as it does not provide support for GPUs. Instead, the component developer needs to encapsulate inside the component, besides functionality, settings and environment information that are specific to a particular GPU architecture. This binds the component this GPU architecture. Using these hardware-specific components characterized by restricted reusability, the system developer is confined to a limited design space which may negatively impact the overall system feasibility.
In this paper, we introduce the concept of flexible components, which are components that can be executed indifferently on CPU or GPU, regardless of the architecture. Using flexible components, component developers are relieved from the side development activities (e.g., environment information) which are automatically handled by component-level mechanisms. To enhance component communications, connection elements (i.e., adapters) are generated to handle component data transmission, taking in consideration the platform characteristics. Finally, our proposed solution is evaluated by using flexible components to implement the vision system of an underwater robot, and execute it on three platforms with different GPU architectures.