mdh.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt166",{id:"formSmash:upper:j_idt166",widgetVar:"widget_formSmash_upper_j_idt166",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt175_j_idt178",{id:"formSmash:upper:j_idt175:j_idt178",widgetVar:"widget_formSmash_upper_j_idt175_j_idt178",target:"formSmash:upper:j_idt175:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

PageRank for networks, graphs and Markov chainsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Theory of Probability and Mathematical Statistics, ISSN 0868-6904, Vol. 96, p. 61-83Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2017. Vol. 96, p. 61-83
##### Keywords [en]

PageRank, random walk, Markov chain, graph, strongly connected component
##### National Category

Probability Theory and Statistics Computational Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-36589DOI: 10.1090/tpms/1034ISI: 000412769200006Scopus ID: 2-s2.0-85055703888OAI: oai:DiVA.org:mdh-36589DiVA, id: diva2:1145921
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt693",{id:"formSmash:j_idt693",widgetVar:"widget_formSmash_j_idt693",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt699",{id:"formSmash:j_idt699",widgetVar:"widget_formSmash_j_idt699",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt705",{id:"formSmash:j_idt705",widgetVar:"widget_formSmash_j_idt705",multiple:true}); Available from: 2017-09-30 Created: 2017-09-30 Last updated: 2019-06-25Bibliographically approved

In this work it is described how a partitioning of a graph into components can be used to calculate PageRank in a large network and how such a partitioning can be used to re-calculate PageRank as the network changes. Although considered problem is that of calculating PageRank, it is worth to note that the same partitioning method could be used when working with Markov chains in general or solving linear systems as long as the method used for solving a single component is chosen appropriately. An algorithm for calculating PageRank using a modified partitioning of the graph into strongly connected components is described. Moreover, the paper focuses also on the calculation of PageRank in a changing graph from two different perspectives, by considering specific types of changes in the graph and calculating the difference in rank before and after certain types of edge additions or removals between components. Moreover, some common specific types of graphs for which it is possible to find analytic expressions for PageRank are considered, and in particular the complete bipartite graph and how PageRank can be calculated for such a graph. Finally, several open directions and problems are described.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1899",{id:"formSmash:j_idt1899",widgetVar:"widget_formSmash_j_idt1899",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1952",{id:"formSmash:lower:j_idt1952",widgetVar:"widget_formSmash_lower_j_idt1952",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1953_j_idt1955",{id:"formSmash:lower:j_idt1953:j_idt1955",widgetVar:"widget_formSmash_lower_j_idt1953_j_idt1955",target:"formSmash:lower:j_idt1953:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});