mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks
National Taiwan University, Taipei, Taiwan.
University of California, Santa Barbara, CA, United States.
National Taiwan University, Taipei, Taiwan.
Tunghai University, Taichung, Taiwan.
Show others and affiliations
2017 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 205, 589-601 p.Article in journal (Refereed) Published
Abstract [en]

The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great opportunity for reducing overall energy demand and its associated environmental impacts. Future policy making for the water and energy sectors should carefully consider the water-energy nexus at the regional or local level to achieve maximum environmental and economic benefits. The results from this study can provide a better understanding of the water-energy nexus and informative recommendations for future policy directions for the effective management of water and energy.

Place, publisher, year, edition, pages
Elsevier Ltd , 2017. Vol. 205, 589-601 p.
National Category
Energy Engineering Energy Systems
Identifiers
URN: urn:nbn:se:mdh:diva-36241DOI: 10.1016/j.apenergy.2017.08.002Scopus ID: 2-s2.0-85026902386OAI: oai:DiVA.org:mdh-36241DiVA: diva2:1133960
Available from: 2017-08-17 Created: 2017-08-17 Last updated: 2017-08-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Yan, Jinyue
By organisation
Future Energy Center
In the same journal
Applied Energy
Energy EngineeringEnergy Systems

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 52 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf