This paper presents a novel method for detecting cardiac ejection murmurs from other pathological and physiological heart murmurs in children. The proposed method combines a hybrid model and a time growing neural network for an improved detection even in mild condition. Children with aortic stenosis and pulmonary stenosis comprised the patient category against the reference category containing mitral regurgitation, ventricular septal defect, innocent murmur and normal (no murmur) conditions. In total, 120 referrals to a children University hospital participated to the study after giving their informed consent. Confidence interval of the accuracy, sensitivity and specificity is estimated to be 87.2% ̶ 88.8%, 83.4% ̶ 86.9% and 88.3% ̶ 90.0%, respectively.