https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of viscosity and thermal conductivity models for CO2 mixtures applied in CO2 cryogenic process in carbon capture and storage (CCS)
School of Chemical Science and Engineering, Royal Institute of Technology, Stockholm, Sweden.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-7328-1024
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-6279-4446
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Show others and affiliations
2017 (English)In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, Vol. 123, p. 721-733Article in journal (Refereed) Published
Abstract [en]

The cryogenic process is used for CO2 purification in oxy-fuel combustion power plant, and multi-stream heat exchanger is one of the most important components. Viscosity and thermal conductivity are key transport properties in the design of plate-fin multi-stream heat exchanger. It is necessary to evaluate the impacts of viscosity and thermal conductivity models on the design of the heat exchanger. In this paper, different viscosity models and thermal conductivity models for CO2 mixtures with non-condensable impurities were first evaluated separately by comparing the calculated results with experimental data. Results show that for viscosity, the absolute average deviation of KRW model is the smallest, which is 1.3%. For thermal conductivity, model developed by Ely and Hanley, with absolute average deviation of 3.5%, is recommended. The impact of property models on the design of plate-fin multi-stream heat exchanger was also analyzed. The thermal conductivity model has a noticeable impact on the plate-fin multi-stream heat exchanger design, and the deviation in design size of heat exchanger by using different thermal conductivity models may reach up to 7.5%. The future work on how to improve the property models was discussed. © 2017 Elsevier Ltd

Place, publisher, year, edition, pages
Elsevier Ltd , 2017. Vol. 123, p. 721-733
Keywords [en]
CO2 cryogenic, CO2 mixture, Model evaluation, Thermal conductivity, Viscosity
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-35796DOI: 10.1016/j.applthermaleng.2017.05.124ISI: 000406564600067Scopus ID: 2-s2.0-85019991865OAI: oai:DiVA.org:mdh-35796DiVA, id: diva2:1110228
Available from: 2017-06-15 Created: 2017-06-15 Last updated: 2018-03-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nookuea, WorradaLi, HailongThorin, EvaYan, Jinyue

Search in DiVA

By author/editor
Nookuea, WorradaLi, HailongThorin, EvaYan, Jinyue
By organisation
Future Energy Center
In the same journal
Applied Thermal Engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 72 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf