https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analyzing Hazards in System-of-Systems: Described in a Quarry Site Automation Context
Volvo Construction Equipment, Eskilstuna, Sweden.ORCID iD: 0000-0003-4756-7285
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-8891-033X
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-5269-3900
2017 (English)In: 11th Annual IEEE International Systems conference SysCon, 2017, p. 544-551Conference paper, Published paper (Refereed)
Abstract [en]

Methods for analyzing hazards related to individual systems are well studied and established in industry today. When system-of-systems are set up to achieve new emergent behavior, hazards specifically caused by malfunctioning behavior of the complex interactions between the involved systems may not be revealed by just analyzing single system hazards. A structured process is required to reduce the complexity to enable identification of hazards when designing system-of-systems. In this paper we first present how hazards are identified and analyzed using hazard and risk assessment (HARA) methodology by the industry in the context of single systems. We describe systems-of-systems and provide a quarry site automation example from the construction equipment domain. We propose a new structured process for identifying potential hazards in systems-of-systems (HISoS), exemplified in the context of the provided example. Our approach helps to streamline the hazard analysis process in an efficient manner thus helping faster certification of system-of-systems.

Place, publisher, year, edition, pages
2017. p. 544-551
Series
Annual IEEE Systems Conference
Keywords [en]
Hazard Analysis and Risk Assessment, System-of-Systems, Autonomous Machines, Safety, Certification
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-35503DOI: 10.1109/SYSCON.2017.7934783ISI: 000403403400078Scopus ID: 2-s2.0-85021435169ISBN: 978-1-5090-4623-2 (electronic)OAI: oai:DiVA.org:mdh-35503DiVA, id: diva2:1107554
Conference
11th Annual IEEE International Systems conference SysCon17, 24 Apr 2017, Montreal, Quebec, Canada
Projects
ITS-EASY Post Graduate School for Embedded Software and SystemsSafeCOP - Safe Cooperating Cyber-Physical Systems using Wireless Communication
Funder
EU, Horizon 2020, 692529 VinnovaAvailable from: 2017-06-09 Created: 2017-06-09 Last updated: 2021-12-04Bibliographically approved
In thesis
1. Safety Analysis of Systems-of-Systems
Open this publication in new window or tab >>Safety Analysis of Systems-of-Systems
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Safety-critical systems may fail dangerously with severe consequences to the health of the involved humans, costly equipment, the environment, or other valuable assets of a stakeholder. For these classes of systems, the developers are obliged to analyze each potentially hazardous situation thoroughly. In addition, any identified hazardous situation needs to be considered for risk reduction measures, including adjustments of the system's design, additional safeguards if the hazards cannot entirely be removed by design, or warning information to users.  

An essential activity in the development process is the safety analysis, where hazards related to the system under development are identified, and the risks are evaluated and classified. This classification stipulates the rigor of complying with safety standard requirements and directing the development and verification activities. Several techniques for safety analysis have been identified in the literature and are applied in industrial development processes.

The technical evolution enables moving from developing single systems with specific features towards attaching several independent systems to a system-of-systems.On top of the trend towards connectedness, there is also a trend towards more and more automation. In the vehicle domain, autonomous vehicles can collaborate to achieve specific goals, like transporting goods in warehouses, transporting containers in automated ports, or transporting material in off-road environments.

Autonomy brings in new challenges when ensuring product safety and functional safety for single systems due to the lack of a human operator as a fallback solution.Further, when autonomous vehicles collaborate in a fleet, the safety analysis becomes more complex since their interaction and interoperability bring forth new hazards not identifiable with a safety analysis of a single system. Our research aims to bridge this gap and provide solutions for specifying a system-of-systems and finding and developing suitable safety analysis methods.

To understand the challenges and current practices, we have studied industrial projects where systems-of-systems are developed. We have applied safety analysis methods to our industrial cases and found limitations of finding hazards related to a system-of-systems. As part of our research, we have developed extensions to the safety analysis methods to support the analysis of a system-of-systems. We have developed the Safe System-of-Systems (SafeSoS) method which is a structured and hierarchical process to discover and document a system-of-systems characteristics on three primary abstraction levels. Additionally, we utilize model-based formalism to describe the System-of-Systems’ characteristics on each level. Our research results support engineers in the industry when designing a safety-critical system-of-systems.

Abstract [sv]

Safety-critical systems may fail dangerously with severe consequences to the health of the involved humans, costly equipment, the environment, or other valuable assets of a stakeholder. For these classes of systems, the developers are obliged to analyze each potentially hazardous situation thoroughly. In addition, any identified hazardous situation needs to be considered for risk reduction measures, including adjustments of the system's design, additional safeguards if the hazards cannot entirely be removed by design, or warning information to users.  An essential activity in the development process is the safety analysis, where hazards related to the system under development are identified, and the risks are evaluated and classified. This classification stipulates the rigor of complying with safety standard requirements and directing the development and verification activities. Several techniques for safety analysis have been identified in the literature and are applied in industrial development processes.The technical evolution enables moving from developing single systems with specific features towards attaching several independent systems to a system-of-systems.On top of the trend towards connectedness, there is also a trend towards more and more automation. In the vehicle domain, autonomous vehicles can collaborate to achieve specific goals, like transporting goods in warehouses, transporting containers in automated ports, or transporting material in off-road environments.Autonomy brings in new challenges when ensuring product safety and functional safety for single systems due to the lack of a human operator as a fallback solution.Further, when autonomous vehicles collaborate in a fleet, the safety analysis becomes more complex since their interaction and interoperability bring forth new hazards not identifiable with a safety analysis of a single system. Our research aims to bridge this gap and provide solutions for specifying a system-of-systems and finding and developing suitable safety analysis methods.To understand the challenges and current practices, we have studied industrial projects where systems-of-systems are developed. We have applied safety analysis methods to our industrial cases and found limitations of finding hazards related to a system-of-systems. As part of our research, we have developed extensions to the safety analysis methods to support the analysis of a system-of-systems. We have developed the Safe System-of-Systems (SafeSoS) method which is a structured and hierarchical process to discover and document a system-of-systems characteristics on three primary abstraction levels. Additionally, we utilize model-based formalism to describe the System-of-Systems’ characteristics on each level. Our research results support engineers in the industry when designing a safety-critical system-of-systems.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2022
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 355
Keywords
System-of-Systems, Safety Analysis, Hazard Analysis, Model-based Development
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-56680 (URN)978-91-7485-542-5 (ISBN)
Public defence
2022-01-14, Zeta (och Zoom), Mälardalens högskola, Västerås, 13:00 (English)
Opponent
Supervisors
Available from: 2021-12-06 Created: 2021-12-04 Last updated: 2022-11-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Fröberg, JoakimPunnekkat, Susikumar

Search in DiVA

By author/editor
Baumgart, StephanFröberg, JoakimPunnekkat, Susikumar
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 218 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf