mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatic Test Generation for Energy Consumption of Embedded Systems Modeled in EAST-ADL
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-7663-5497
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-2416-4205
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-2870-2680
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-5032-2310
2017 (English)In: Proceedings - 10th IEEE International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2017, 2017, 69-76 p.Conference paper (Refereed)
Abstract [en]

Testing using architectural design models is intended to determine if the realized system meets its specification, and works as a whole in terms of computational components and their interactions. The growing complexity of embedded systems requires new techniques that are able to support testing of extra-functional requirements, like energy usage of components and systems, which is very necessary in order to obtain valid implementations. In this paper, we show how architectural models described in the EAST-ADL architectural language can also be used for testing the energy consumption of embedded systems, after transforming them into networks of formal models called priced timed automata. Assuming an EAST-ADL model annotated with energy consumption information, we show how to automatically generate energy-aware test cases based on statistical model checking (SMC) of the resulting network of priced timed automata. We automate the generation of executable test cases with UPPAAL SMC, using a test strategy based on several random simulation runs of the system. By seeding the original formal model with a set of energy-consumption related faults, we are able to carry out fault detection analysis. We apply this technique on a Brake-by-Wire system from the automotive domain, and evaluate it in terms of efficiency and model fault detection. 

Place, publisher, year, edition, pages
2017. 69-76 p.
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-35337DOI: 10.1109/ICSTW.2017.19ScopusID: 2-s2.0-85018418022ISBN: 9781509066766 OAI: oai:DiVA.org:mdh-35337DiVA: diva2:1096881
Conference
10th IEEE International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2017, 13 March 2017 through 17 March 2017
Available from: 2017-05-19 Created: 2017-05-19 Last updated: 2017-05-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Marinescu, RalucaEnoiu, Eduard PaulSeceleanu, CristinaSundmark, Daniel
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf