mdh.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Limit shapes of stable configurations of a generalized Bulgarian solitairePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); (English)In: Order, ISSN 0167-8094, E-ISSN 1572-9273, ISSN 0167-8094Article in journal (Other academic) Submitted
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer Netherlands.
##### Keyword [en]

Bulgarian solitaire, Limit shape
##### National Category

Discrete Mathematics
##### Research subject

Mathematics/Applied Mathematics
##### Identifiers

URN: urn:nbn:se:mdh:diva-35013OAI: oai:DiVA.org:mdh-35013DiVA: diva2:1081125
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt435",{id:"formSmash:j_idt435",widgetVar:"widget_formSmash_j_idt435",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt441",{id:"formSmash:j_idt441",widgetVar:"widget_formSmash_j_idt441",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt447",{id:"formSmash:j_idt447",widgetVar:"widget_formSmash_j_idt447",multiple:true});
##### Funder

Swedish Research Council, 2010-5565, 621-2009-6090
Available from: 2017-03-13 Created: 2017-03-13 Last updated: 2017-03-16Bibliographically approved
##### In thesis

Bulgarian solitaire is played on *n* cards divided into several piles; a move consists of picking one card from each pile to form a new pile. In a recent generalization, -Bulgarian solitaire, the number of cards you pick from a pile is some function of the pile size, such that you pick cards from a pile of size *h*. Here we consider a special class of such functions. Let us call well-behaved if and if both and are non-decreasing functions of *h*. Well-behaved -Bulgarian solitaire has a geometric interpretation in terms of layers at certain levels being picked in each move. It also satisfies that if a stable configuration of *n* cards exists it is unique. Moreover, if piles are sorted in order of decreasing size () then a configuration is convex if and only if it is a stable configuration of some well-behaved -Bulgarian solitaire. If sorted configurations are represented by Young diagrams and scaled down to have unit height and unit area, the stable configurations corresponding to an infinite sequence of well-behaved functions () may tend to a limit shape . We show that every convex with certain properties can arise as the limit shape of some sequence of well-behaved . For the special case when for , these limit shapes are triangular (in case ), or exponential (in case ), or interpolating between these shapes (in case ).

1. Processes on Integer Partitions and Their Limit Shapes$(function(){PrimeFaces.cw("OverlayPanel","overlay1082060",{id:"formSmash:j_idt708:0:j_idt712",widgetVar:"overlay1082060",target:"formSmash:j_idt708:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1168",{id:"formSmash:lower:j_idt1168",widgetVar:"widget_formSmash_lower_j_idt1168",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1169_j_idt1171",{id:"formSmash:lower:j_idt1169:j_idt1171",widgetVar:"widget_formSmash_lower_j_idt1169_j_idt1171",target:"formSmash:lower:j_idt1169:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});