mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigating the possibility of applying an ADM1 based model to a full-scale co-digestion plant
Mälardalen University, School of Sustainable Development of Society and Technology. Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3131-0285
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-3485-5440
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. KTH-Royal Institute of Technology, Stockholm, Sweden.ORCID iD: 0000-0003-0300-0762
2017 (English)In: Biochemical engineering journal, ISSN 1369-703X, E-ISSN 1873-295X, Vol. 120, 73-83 p.Article in journal (Refereed) Published
Abstract [en]

This study investigated the possibility of using a model based on the anaerobic digestion model no. 1 (ADM1) on a full-scale 4000 m3 digester in order to understand how such theoretical models can be applied to a real industrial process. The industrial scale digester co-digests the organic fraction of municipal solid waste, grease trap sludge, and ley crop silage with varying feed rates and amounts of volatile solids. A year of process data was collected. Biogas flow, methane content/flow, and ammonia nitrogen were the variables that the model was best at predicting (index of agreement at 0.78, 0.61/0.77, and 0.68, respectively). The model was also used to investigate the effect of increasing the volatile solids (VS) concentration entering the digester. According to simulation results, increasing the influent VS concentration will increase biogas and methane outflow (from 1.5 million Nm3 methane to more than 2 million Nm3 methane), but decrease the amounts of biogas/methane per unit of volatile solids (from about 264 Nm3methane per tonne VS to below 215 Nm3 methane per tonne VS).

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 120, 73-83 p.
National Category
Bioenergy
Identifiers
URN: urn:nbn:se:mdh:diva-34634DOI: 10.1016/j.bej.2016.12.014ISI: 000395603900009Scopus ID: 2-s2.0-85009230307OAI: oai:DiVA.org:mdh-34634DiVA: diva2:1065431
Available from: 2017-01-16 Created: 2017-01-16 Last updated: 2017-04-13Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Nordlander, EvaEva, ThorinYan, JinYue
By organisation
School of Sustainable Development of Society and TechnologyFuture Energy Center
In the same journal
Biochemical engineering journal
Bioenergy

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf