mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion
Tsinghua University, Beijing, China .
School of Environment, Tsinghua University, Beijing, China.
School of Environment, Tsinghua University, Beijing, China.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0002-6279-4446
Show others and affiliations
2017 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 118, 377-386 p.Article in journal (Refereed) Published
Abstract [en]

The influence of thermal pretreatment on degradation properties of organics in kitchen waste (KW) was investigated. The kinetics results showed that thermal pretreatment could enhance the degradation efficiency of crude protein (CP), fat, oil and grease (FOG), volatile solid (VS) and volatile fatty acids (VFA). Thermal pretreatment showed no significant difference in the final concentration of protein but could decrease the FOG degradation potential (7–36%), while increased the lag phase for degradation of protein and FOG respectively by 35–65% and 11–82% compared with untreated KW. Cumulative biogas yield increased linearly and exponentially with the removal efficiency of VS and other organics (CP and FOG) respectively. Additionally, the reduction of CP increased exponentially with FOG removal efficiency. The calculating methods of biogas yield, organics reduction and corresponding appropriate digestion retention based on FOG and CP reduction amount and pretreatment parameters were suggested.

Place, publisher, year, edition, pages
2017. Vol. 118, 377-386 p.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-34612DOI: 10.1016/j.energy.2016.12.041ISI: 000395048900033ScopusID: 2-s2.0-85008195256OAI: oai:DiVA.org:mdh-34612DiVA: diva2:1065135
Available from: 2017-01-13 Created: 2017-01-13 Last updated: 2017-04-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Li, Hailong
By organisation
Future Energy Center
In the same journal
Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf