https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Primary energy use in buildings in a Swedish perspective
Mälardalen University, School of Business, Society and Engineering, Future Energy Center. Energy Technology, Dalarna University, Falun, Sweden.ORCID iD: 0000-0002-3630-663X
Energy Technology, Dalarna University, Falun, Sweden.
Building Technology, Dalarna University, Falun, Sweden.
Mälardalen University, School of Business, Society and Engineering, Future Energy Center.ORCID iD: 0000-0001-9230-1596
2016 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 130, p. 202-209Article in journal (Refereed) Published
Abstract [en]

The building sector accounts for a large part of the energy use in Europe and is a sector where the energy efficiency needs to improve in order to reach the EU energy and climate goals. The energy efficiency goal is set in terms of primary energy even though there are different opinions on how to calculate primary energy. When determining the primary energy use in a building several assumptions are made regarding allocation and the value of different energy sources. In order to analyze the difference in primary energy when different methods are used, this study use 16 combinations of different assumptions to calculate the primary energy use for three simulated heating and ventilations systems in a building. The system with the lowest primary energy use differs depending on the method used. Comparing a system with district heating and mechanical exhaust ventilation with a system with district heating, mechanical exhaust ventilation and exhaust air heat pump, the former has a 40% higher primary energy use in one scenario while the other has a 320% higher in another scenario. This illustrates the difficulty in determining which system makes the largest contribution to fulfilling the EU energy and climate goals.

Place, publisher, year, edition, pages
2016. Vol. 130, p. 202-209
Keywords [en]
Air heat recovery, District heating, Energy efficiency, Heat pump, Primary energy, Primary energy factors, Heat pump systems, Heating, Ventilation, Ventilation exhausts, Waste heat, Building sectors, Different energy sources, Exhaust air, Heat pumps, Large parts, Mechanical exhausts, Primary energies, Primary energy use
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:mdh:diva-33110DOI: 10.1016/j.enbuild.2016.08.026ISI: 000385323900019Scopus ID: 2-s2.0-84983483204OAI: oai:DiVA.org:mdh-33110DiVA, id: diva2:967399
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2019-09-16Bibliographically approved
In thesis
1. The impact on the energy system of heating demands in buildings: A case study on district heating and electricity for heating in Falun, Sweden
Open this publication in new window or tab >>The impact on the energy system of heating demands in buildings: A case study on district heating and electricity for heating in Falun, Sweden
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2017
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 250
National Category
Energy Engineering
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-34255 (URN)978-91-7485-305-6 (ISBN)
Presentation
2017-02-09, Högskolan Dalarna, Borlänge, 13:00 (Swedish)
Opponent
Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2022-11-09Bibliographically approved
2. Heating of buildings from a system perspective
Open this publication in new window or tab >>Heating of buildings from a system perspective
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy efficiency measures in buildings are considered to have great potential for reducing total energy use, and contribute to a reduced climate and environmental impact. In Sweden, however, there is a focus on bought energy, which does not always reflect the environmental and climate impact. Focusing on bought energy means that a house owner may choose an electricity based heat pump instead of district heating (DH), since heat pumps result in less bought energy compared to DH.

The energy system surrounding the buildings is affected by the choice of energy carriers used for heating. This thesis uses three different methods to study how the energy system is affected. In the first part, primary energy use has been calculated for a simulated building with different heating systems, resulting in different electricity and DH demands. The second part studies the impact on peak demand and annual consumption in the power grid and DH system due to different market shares of electricity based heating and DH. In the third part, the life cycle cost is calculated for different heating solutions from both a building and a socio-economic perspective, for 100 % renewable energy system scenarios.

The results show that the choice of energy carrier has a great influence on primary energy use. However, this depends even more on the calculation method used. Which heating solution, and thus which energy carrier, gives the lowest primary energy use varies with the different methods.

The power grid and DH system are affected by the choice of energy carrier. There is a potential to lower peak demand in the power grid by more efficient heat pumps. But an even greater potential is shown by using DH instead of electricity based heating. A larger share of DH also allows the production of more electricity with the use of combined heat and power.

The life cycle cost for different heating solutions also depends on the method used. From a building owner’s perspective, with current electricity and DH prices, electricity based heating is more economical. However, from a socio-economic perspective, with increasing electricity system costs due to a larger share of variable electricity production in a 100 % renewable system, DH becomes more economically profitable in several scenarios.

The choice of energy carrier for heating in buildings affects the energy system to a high degree. A system perspective is therefore important in local, national and global energy efficiency policies and projects.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 297
National Category
Energy Systems
Research subject
Energy- and Environmental Engineering
Identifiers
urn:nbn:se:mdh:diva-45230 (URN)978-91-7485-439-8 (ISBN)
Public defence
2019-11-05, Sal 320, Högskolan Dalarna, Borlänge, 13:00
Opponent
Supervisors
Available from: 2019-09-18 Created: 2019-09-16 Last updated: 2019-09-30Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dotzauer, Erik

Search in DiVA

By author/editor
Swing Gustafsson, MoaDotzauer, Erik
By organisation
Future Energy Center
In the same journal
Energy and Buildings
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 126 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf