mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Computerized screening of children congenital heart diseases
TCTS Laboratory, Faculte Polytecnique de Mons, Belgium.
TCTS Laboratory, Faculte Polytecnique de Mons, Belgium.
TCTS Laboratory, Faculte Polytecnique de Mons, Belgium.
TCTS Laboratory, Faculte Polytecnique de Mons, Belgium.
Vise andre og tillknytning
2008 (engelsk)Inngår i: Computerized screening of children congenital heart diseases CMPB, ISSN 0169-2607, Vol. 92, nr 2, s. 186-192Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In this paper, we propose a method for automated screening of congenital heart diseases in children through heart sound analysis techniques. Our method relies on categorizing the pathological murmurs based on the heart sections initiating them. We show that these pathelogical murmur categories can be identified by examining the heart sound energy over specific frequency bands, which we call, Arash-Bands. To specify the Arash-Band for a category, we evaluate the energy of the heart sound over all possible frequency bands. The Arash-Band is the frequency band that provides the lowest error in clustering the instances of that category against the normal ones. The energy content of the Arash-Bands for different categories constitue a feature vector that is suitable for classification using a neural network. In order to train, and to evaluate the performance of the proposed method, we use a training data-bank, as well as a test data-bank, collectively consisting of ninety samples (normal and abnormal). Our results show that in more than 94% of cases, our method correctly identifies children with congenital heart diseases. This percentage improves to 100%, when we use the Jack-Knife validation method over all the 90 samples.

sted, utgiver, år, opplag, sider
United Kingdom, 2008. Vol. 92, nr 2, s. 186-192
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-30471DOI: 10.1016/j.cmpb.2008.06.015ISI: 000260919300003Scopus ID: 2-s2.0-52949107982OAI: oai:DiVA.org:mdh-30471DiVA, id: diva2:886006
Tilgjengelig fra: 2015-12-21 Laget: 2015-12-21 Sist oppdatert: 2015-12-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Ghareh Baghi, Arash

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 18 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf