mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-normalized PageRank and random walks on N-partite graphs
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0002-1624-5147
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0003-4554-6528
2014 (Engelska)Ingår i: SMTDA 2014 Proceedings / [ed] H. Skiadas (Ed), 2014, s. 193-202Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In this article we will look at a variation of the PageRank algorithmoriginally used by L. Page and S. Brin to rank home pages on the Web. Wewill look at a non-normalized variation of PageRank and show how this version ofPageRank relates to a random walk on a graph. The article has its main focus inunderstanding the behavior of the ranking depending on the structure of the graphand how the ranking changes as the graph change. More specic we will look atN-partite graphs and see that by considering a random walk on the graph we cannd explicit formulas for PageRank of the vertices in the graph. Both the case withuniform and non-uniform personalization vector are considered.

Ort, förlag, år, upplaga, sidor
2014. s. 193-202
Nyckelord [en]
PageRank, N-partite graph, random walk.
Nationell ämneskategori
Matematik Beräkningsmatematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-30003OAI: oai:DiVA.org:mdh-30003DiVA, id: diva2:885231
Konferens
3rd Stochastic Modelling Techniques and Data Analysis International Conference (SMTDA 2014), 11-14 June 2014, Lisbon, Portugal
Tillgänglig från: 2015-12-18 Skapad: 2015-12-18 Senast uppdaterad: 2016-10-24Bibliografiskt granskad
Ingår i avhandling
1. PageRank in Evolving Networks and Applications of Graphs in Natural Language Processing and Biology
Öppna denna publikation i ny flik eller fönster >>PageRank in Evolving Networks and Applications of Graphs in Natural Language Processing and Biology
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis is dedicated to the use of graph based methods applied to ranking problems on the Web-graph and applications in natural language processing and biology.

Chapter 2-4 of this thesis is about PageRank and its use in the ranking of home pages on the Internet for use in search engines. PageRank is based on the assumption that a web page should be high ranked if it is linked to by many other pages and/or by other important pages. This is modelled as the stationary distribution of a random walk on the Web-graph.

Due to the large size and quick growth of the Internet it is important to be able to calculate this ranking very efficiently. One of the main topics of this thesis is how this can be made more efficiently, mainly by considering specific types of subgraphs and how PageRank can be calculated or updated for those type of graph structures. In particular we will consider the graph partitioned into strongly connected components and how this partitioning can be utilized.

Chapter 5-7 is dedicated to graph based methods and their application to problems in Natural language processing. Specifically given a collection of texts (corpus) we will compare different clustering methods applied to Pharmacovigilance terms (5), graph based models for the identification of semantic relations between biomedical words (6) and modifications of CValue for the annotation of terms in a corpus.

In Chapter 8-9 we look at biological networks and the application of graph centrality measures for the identification of cancer genes. Specifically in (8) we give a review over different centrality measures and their application to finding cancer genes in biological networks and in (9) we look at how well the centrality of vertices in the true network is preserved in networks generated from experimental data.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2016
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 217
Nationell ämneskategori
Matematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
urn:nbn:se:mdh:diva-33459 (URN)978-91-7485-298-1 (ISBN)
Disputation
2016-12-08, Kappa, Mälardalens högskola, Västerås, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-10-24 Skapad: 2016-10-24 Senast uppdaterad: 2016-11-23Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Engström, ChristopherSilvestrov, Sergei

Sök vidare i DiVA

Av författaren/redaktören
Engström, ChristopherSilvestrov, Sergei
Av organisationen
Utbildningsvetenskap och Matematik
MatematikBeräkningsmatematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 133 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf