mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Gas Turbines for Power and Propulsion
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Cranfield University. (Future Energy Center)ORCID-id: 0000-0002-8466-356X
Von Karman Institute, Rhode-Saint-Genese, Belgium.
Cranfield University, Cranfield, UK.
2015 (Engelska)Ingår i: Handbook of Clean Energy Systems: Volume 2 - Clean Energy Conversion Technologies / [ed] Jinyue Yan, Chichester, West Sussex, UK: John Wiley & Sons, 2015, 1, s. 1-25Kapitel i bok, del av antologi (Refereegranskat)
Abstract [en]

For over seven decades, the gas turbine has been used successfully in a variety of applications including aircraft, ship, and surface vehicle propulsion as well as for electrical power and heat generation. The gas turbine is in essence a type of internal combustion engine comprising in its simplest form a compressor, a combustor, and a turbine. It can utilize a variety of different fuels, most commonly natural gas and kerosene (Jet-A).

The gas turbine has played a key role in the expansion of jet transportation and is currently the prime mover for almost all commercial applications, other than light aircraft. It also has had a considerable impact in the power generation sector with efficiencies in excess of 40% for simple cycles, and close to 60% for combined cycles. Over the next decades, it is expected that the gas turbine will continue to play a significant role in the power generation and propulsion market.

This article covers the fundamentals of gas turbine design, performance, and future technology development. First, a short presentation of the fundamental thermodynamics relating to the gas turbine is given. It is followed by an ideal analysis of three major cycles: the simple cycle, the intercooled cycle, and the intercooled recuperated cycle. Typical losses for gas turbine components are discussed along with relevant performance modeling methods. The fundamental principles of gas turbine conceptual design are presented followed by an assessment of the real performance of the three major cycles. Finally, a critical review is presented of future gas turbine concepts and their enabling technologies, with the primary focus on civil aircraft propulsion. Recent development trends and the primary research and development efforts by major gas turbine manufacturers are discussed in detail.

Ort, förlag, år, upplaga, sidor
Chichester, West Sussex, UK: John Wiley & Sons, 2015, 1. s. 1-25
Nyckelord [en]
Gas turbine; Power Generation; Propulsion; Review; Technology
Nationell ämneskategori
Rymd- och flygteknik Energiteknik
Forskningsämne
energi- och miljöteknik
Identifikatorer
URN: urn:nbn:se:mdh:diva-29853DOI: 10.1002/9781118991978.hces140ISBN: 978-1-118-38858-7 (tryckt)OAI: oai:DiVA.org:mdh-29853DiVA, id: diva2:877430
Tillgänglig från: 2015-12-07 Skapad: 2015-12-07 Senast uppdaterad: 2018-02-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltexthttp://onlinelibrary.wiley.com/doi/10.1002/9781118991978.hces140/full

Personposter BETA

Kyprianidis, Konstantinos

Sök vidare i DiVA

Av författaren/redaktören
Kyprianidis, Konstantinos
Av organisationen
Framtidens energi
Rymd- och flygteknikEnergiteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 175 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf