mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. (Biomedical Engineering)ORCID iD: 0000-0001-8294-861X
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-1940-1747
Auckland University of Technology, New Zealand.
2015 (English)In: Studies in Health Technology and Informatics, Volume 211, 2015, p. 91-97Conference paper, Published paper (Refereed)
Abstract [en]

This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum.

Place, publisher, year, edition, pages
2015. p. 91-97
Series
Studies in Health Technology and Informatics, ISSN 0926-9630 ; 211
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:mdh:diva-27873DOI: 10.3233/978-1-61499-516-6-91Scopus ID: 2-s2.0-84939229104ISBN: 978-1-61499-515-9 (print)OAI: oai:DiVA.org:mdh-27873DiVA, id: diva2:806945
Conference
12th International Conference on Wearable Micro and Nano Technologies for Personalized Health, Västerås, Sweden, June 2-4, 2015
Available from: 2015-04-22 Created: 2015-04-22 Last updated: 2018-12-17Bibliographically approved
In thesis
1. Proposing Combined Approaches to Remove ECG Artifacts from Surface EMG Signals
Open this publication in new window or tab >>Proposing Combined Approaches to Remove ECG Artifacts from Surface EMG Signals
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Electromyography (EMG) is a tool routinely used for a variety of applications in a very large breadth of disciplines. However, this signal is inevitably contaminated by various artifacts originated from different sources. Electrical activity of heart muscles, electrocardiogram (ECG), is one of sources which affects the EMG signals due to the proximity of the collection sites to the heart and makes its analysis non-reliable. Different methods have been proposed to remove ECG artifacts from surface EMG signals; however, in spite of numerous attempts to eliminate or reduce this artifact, the problem of accurate and effective de-noising of EMG still remains a challenge. In this study common methods such as high pass filter (HPF), gating method, spike clipping, hybrid technique, template subtraction, independent component analysis (ICA), wavelet transform, wavelet-ICA, artificial neural network (ANN), and adaptive noise canceller (ANC) and adaptive neuro-fuzzy inference system (ANFIS) are used to remove ECG artifacts from surface EMG signals and their accuracy and effectiveness is investigated. HPF, gating method and spike clipping are fast; however they remove useful information from EMG signals. Hybrid technique and ANC are time consuming. Template subtraction requires predetermined QRS pattern. Using wavelet transform some artifacts remain in the original signal and part of the desired signal is removed. ICA requires multi-channel signals. Wavelet-ICA approach does not require multi-channel signals; however, it is user-dependent. ANN and ANFIS have good performance, but it is possible to improve their results by combining them with other techniques. For some applications of EMG signals such as rehabilitation, motion control and motion prediction, the quality of EMG signals is very important. Furthermore, the artifact removal methods need to be online and automatic. Hence, efficient methods such as ANN-wavelet, adaptive subtraction and automated wavelet-ICA are proposed to effectively eliminate ECG artifacts from surface EMG signals. To compare the results of the investigated methods and the proposed methods in this study, clean EMG signals from biceps and deltoid muscles and ECG artifacts from pectoralis major muscle are recorded from five healthy subjects to create 10 channels of contaminated EMG signals by adding the recorded ECG artifacts to the clean EMG signals. The artifact removal methods are also applied to the 10 channels of real contaminated EMG signals from pectoralis major muscle of the left side. Evaluation criteria such as signal to noise ratio, relative error, correlation coefficient, elapsed time and power spectrum density are used to evaluate the performance of the proposed methods. It is found that the performance of the proposed ANN-wavelet method is superior to the other methods with a signal to noise ratio, relative error and correlation coefficient of 15.53, 0.01 and 0.98 respectively.

Abstract [sv]

Elektromyografi (EMG) är ett verktyg som rutinmässigt används för en mängd olika applikationer inom många discipliner. Dock är denna signal oundvikligen kontaminerad av artefakter som kommer från olika källor. Elektrisk aktivitet av hjärtmuskln, elektrokardiogram (EKG), är en av störkällorna som påverkar EMG-signalerna på grund av närheten till hjärtat och som försämrar analysens tillförlitlig. Olika metoder har föreslagits för att ta bort EKG artefakter från yt-EMG-signaler men trots många försök att eliminera eller minska denna artefakt, kvarstår problemet med korrekt och effektivt brusreducering av EMG. I denna studie har vanliga metoder för brusundertryckning undersökts, såsom högpassfilter (HPF), gatingmetod, spikklippning, hybridteknik, subtraktionsmetod, oberoende komponentanalys (ICA), wavelet, wavelet-ICA, artificiella neurala nätverk (ANN), och adaptiv brusreducering (ANC) och adaptiv neuro fuzzy inference system (ANFIS). Metorderna har använts för att avlägsna EKG- artefakter från yt-EMG-signaler och deras noggrannhet och effektivitet har undersökts. HPF, gatingmetod och spikklippning är snabba; men de tar även bort relevant information från EMG-signalen. Hybridteknik och ANC är tidskrävande. Subtraktionsmetoden kräver kännedom om QRS-mönstret.Wavelettransformen lämnade kvar vissa artefakter i signalen, och avlägsnade även endel av den ursprungliga EMG-signalen. ICA kräver flerkanaliga signaler. Wavelet-ICA kräver inte flerkanaliga signaler, men är däremot användarberoende. ANN och ANFIS har bra prestanda, men det är möjligt att förbättra resultaten genom att kombinera dem med andra tekniker. För vissa tillämpningar av EMG-signaler såsom rehabilitering, rörelsekontroll och prediktion, är kvaliteten på EMG-signalerna mycket viktigt. Dessutom måste de artefaktreducerande metoderna vara i realtid och automatiska. Detta innebär att metoderna ANN-wavelet, adaptiv subtraktion och automatiserad wavelet-ICA rekommenderas för effektiv eliminering av EKG-artefakter från yt-EMG-signaler. För att jämföra resultaten av de undersökta och föreslagna metoderna i denna studie, har rena EMG-signaler från biceps och delta-muskler, samt EKG-artefakter från stora bröstmuskeln spelats in från fem friska personer. För att skapa 10-kanaliga brusiga EMG-signaler har de inspelade EKG-artefakterna adderats till de rena EMG-signalerna. De olika artefaktreduceringsmetoderna har även tillämpats på 10 kanaler verkliga EMG signaler med artefakter, från stora bröstmuskeln på vänster sida. Utvärderingskriterier såsom signal-brusförhållandet, relativta felet, korrelationskoefficienten, förfluten tid och effektspektrumstäthet har använts för att utvärdera de föreslagna metoderna. Prestandan hos den föreslagna ANN-wavelet metoden befanns överlägsen de andra metoderna med ett signalbrusförhållande på 15,53, relativt fel på 0,01 och korrelationskoefficient på 0,98.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2015
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 204
National Category
Signal Processing
Identifiers
urn:nbn:se:mdh:diva-27878 (URN)978-91-7485-206-6 (ISBN)
Presentation
2015-06-16, Delta, Mälardalens högskola, Västerås, 13:15 (English)
Opponent
Supervisors
Available from: 2015-04-22 Created: 2015-04-22 Last updated: 2015-05-18Bibliographically approved
2. Electromyogram Signal Enhancement and Upper-Limb Myoelectric Pattern Recognition
Open this publication in new window or tab >>Electromyogram Signal Enhancement and Upper-Limb Myoelectric Pattern Recognition
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Losing a limb causes difficulties in our daily life. To regain the ability to live an independent life, artificial limbs have been developed. Hand prostheses belong to a group of artificial limbs that can be controlled by the user through the activity of the remnant muscles above the amputation. Electromyogram (EMG) is one of the sources that can be used for control methods for hand prostheses. Surface EMGs are powerful, non-invasive tools that provide information about neuromuscular activity of the subjected muscle, which has been essential to its use as a source of control for prosthetic limbs. However, the complexity of this signal introduces a big challenge to its applications. EMG pattern recognition to decode different limb movements is an important advancement regarding the control of powered prostheses. It has the potential to enable the control of powered prostheses using the generated EMG by muscular contractions as an input. However, its use has yet to be transitioned into wide clinical use. Different algorithms have been developed in state of the art to decode different movements; however, the challenge still lies in different stages of a successful hand gesture recognition and improvements in these areas could potentially increase the functionality of powered prostheses. This thesis firstly focuses on improving the EMG signal’s quality by proposing novel and advanced filtering techniques. Four efficient approaches (adaptive neuro-fuzzy inference system-wavelet, artificial neural network-wavelet, adaptive subtraction and automated independent component analysis-wavelet) are proposed to improve the filtering process of surface EMG signals and effectively eliminate ECG interferences. Then, the offline performance of different EMG-based recognition algorithms for classifying different hand movements are evaluated with the aim of obtaining new myoelectric control configurations that improves the recognition stage. Afterwards, to gain proper insight on the implementation of myoelectric pattern recognition, a wide range of myoelectric pattern recognition algorithms are investigated in real time. The experimental result on 15 healthy volunteers suggests that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) outperform other classifiers. The real-time investigation illustrates that in addition to the LDA and MLE, multilayer perceptron also outperforms the other algorithms when compared using classification accuracy and completion rate.

Abstract [sv]

Att förlora en extremitet orsakar svårigheter i vår vardag. För att återfå förmågan till ett självständigt liv har artificiella händer och ben utvecklats. Handproteser kan kontrolleras av användaren genom aktiviteten hos återstående muskler ovanför amputationen. Elektromyogram (EMG) är en av de källor som kan användas till kontrollmetoder för handproteser. Yt-EMG är kraftfulla icke-invasiva verktyg som ger information om neuromuskulär aktivitet hos en specifik muskel, vilket är avgörande för dess användning att styra proteser. Komplexiteten hos signalen utgör dock en stor utmaning. EMG-mönsterigenkänning för att avkoda olika handrörelser är ett viktigt framsteg när det gäller kontroll av motoriserade proteser. Denna metod har potential att möjliggöra styrning av proteser genom att använda EMG-signalerna från muskelkontraktioner som insignal. Denna metod har dock ännu inte fått någon stor klinisk spridning. Olika algoritmer har utvecklats inom området för att avkoda olika rörelser; men utmaningen att identifiera olika handrörelser i olika faser kvarstår, och förbättringar inom dessa områden kan komma att öka funktionaliteten hos motoriserade proteser. Denna avhandling undersöker flera aspekter kring detta, först hur kvaliteten hos EMG-signaler kan förbättras genom att nya och avancerade filtreringstekniker. Fyra effektiva tillvägagångssätt (adaptivt neuro-fuzzy inference system-wavelet, artificiellt neuralt nätverk-wavelet, adaptiv subtraktion och automatiserad oberoende komponentanalys-wavelet) presenteras för att förbättra filtreringsprocessen för yt-EMG-signaler och effektivt eliminera EKG-störningar. Även offline-prestanda för olika EMG-baserade igenkänningsalgoritmer undersöks, däribland förmågan att klassificera olika handrörelser med sikte på att erhålla nya myoelektriska kontrollkonfigurationer som förbättrar igenkänningen. För att undersöka hur väl de myoelektriska mönsterigenkänningssalgoritmerna fungerar i verkliga situationer, har ett brett spektrum av myoelektriska algoritmer undersökts i realtid. 15 friska frivilliga försökspersoner har använt systemet och resultaten tyder på att linjär diskriminantanalys (LDA) och maximal sannolikhetsbedömning (MLE) är bättre än de andra klassificeringsmetoderna. Realtidsundersökningen visar också att förutom LDA och MLE, så är algoritmerna med flerlagersperception bättre än de övriga algoritmerna då de jämförs med avseende på klassificeringsnoggrannhet och beräkningshastighet.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 283
National Category
Signal Processing
Research subject
Electronics
Identifiers
urn:nbn:se:mdh:diva-41669 (URN)978-91-7485-418-3 (ISBN)
Public defence
2019-02-22, Delta, Mälardalens högskola, Västerås, 09:30 (English)
Opponent
Supervisors
Available from: 2018-12-17 Created: 2018-12-17 Last updated: 2019-01-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://www.es.mdh.se/pdf_publications/3894.pdf

Authority records BETA

Abbaspour, SaraLindén, Maria

Search in DiVA

By author/editor
Abbaspour, SaraLindén, Maria
By organisation
Embedded Systems
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1130 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf