mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An evaluation of centrality measures used in cluster analysis
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0002-1624-5147
Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, Utbildningsvetenskap och Matematik. (Mathematics and Applied Mathematics)ORCID-id: 0000-0003-4554-6528
2014 (Engelska)Ingår i: 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014 Conference date: 15–18 July 2014 Location: Narvik, Norway ISBN: 978-0-7354-1276-7 Editor: Seenith Sivasundaram Volume number: 1637 Published: 10 december 2014 / [ed] Seenith Sivasundaram, American Institute of Physics (AIP), 2014, s. 313-320Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Clustering of data into groups of similar objects plays an important part when analysing many types of data especially when the datasets are large as they often are in for example bioinformatics social networks and computational linguistics. Many clustering algorithms such as K-means and some types of hierarchical clustering need a number of centroids representing the 'center' of the clusters. The choice of centroids for the initial clusters often plays an important role in the quality of the clusters. Since a data point with a high centrality supposedly lies close to the 'center' of some cluster this can be used to assign centroids rather than through some other method such as picking them at random. Some work have been done to evaluate the use of centrality measures such as degree betweenness and eigenvector centrality in clustering algorithms. The aim of this article is to compare and evaluate the usefulness of a number of common centrality measures such as the above mentioned and others such as PageRank and related measures.

Ort, förlag, år, upplaga, sidor
American Institute of Physics (AIP), 2014. s. 313-320
Nationell ämneskategori
Matematik
Forskningsämne
matematik/tillämpad matematik
Identifikatorer
URN: urn:nbn:se:mdh:diva-27252DOI: 10.1063/1.4904594ISI: 000347812200037Scopus ID: 2-s2.0-85031859549ISBN: 978-0-7354-1276-7 (tryckt)OAI: oai:DiVA.org:mdh-27252DiVA, id: diva2:775303
Konferens
10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014 Conference date: 15–18 July 2014 Location: Narvik, Norway
Tillgänglig från: 2014-12-31 Skapad: 2014-12-31 Senast uppdaterad: 2017-11-02Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://scitation.aip.org/content/aip/proceeding/aipcp/1637

Personposter BETA

Engström, ChristopherSilvestrov, Sergei

Sök vidare i DiVA

Av författaren/redaktören
Engström, ChristopherSilvestrov, Sergei
Av organisationen
Utbildningsvetenskap och Matematik
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 101 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf