mdh.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Hybrid Case-Based System in Stress Diagnosis and Treatment
Mälardalens högskola, Akademin för innovation, design och teknik. (Intelligent Systems)ORCID-id: 0000-0003-3802-4721
Mälardalens högskola, Akademin för innovation, design och teknik. (Intelligent Systems)ORCID-id: 0000-0002-1212-7637
Mälardalens högskola, Akademin för innovation, design och teknik. (Intelligent Systems)ORCID-id: 0000-0002-5562-1424
2012 (Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Computer-aided decision support systems play anincreasingly important role in clinical diagnosis and treatment.However, they are difficult to build for domains where thedomain theory is weak and where different experts differ indiagnosis. Stress diagnosis and treatment is an example of such adomain. This paper explores several artificial intelligencemethods and techniques and in particular case-based reasoning,textual information retrieval, rule-based reasoning, and fuzzylogic to enable a more reliable diagnosis and treatment of stress.The proposed hybrid case-based approach has been validated byimplementing a prototype in close collaboration with leadingexperts in stress diagnosis. The obtained sensitivity, specificityand overall accuracy compared to an expert are 92%, 86% and88% respectively.

Ort, förlag, år, upplaga, sidor
2012.
Nyckelord [en]
Artificial intelligence, Biofeedback, Case based reasoning, Diagnosis, Information retrieval, Rule based reasoning, Stress measurement.
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
datavetenskap
Identifikatorer
URN: urn:nbn:se:mdh:diva-13161OAI: oai:DiVA.org:mdh-13161DiVA, id: diva2:450594
Konferens
IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI2012)
Projekt
IModNovaMedTech
Anmärkning
Submitted to: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI2012)Tillgänglig från: 2011-10-21 Skapad: 2011-10-21 Senast uppdaterad: 2018-01-12Bibliografiskt granskad
Ingår i avhandling
1. A Multimodal Approach for Clinical Diagnosis and Treatment
Öppna denna publikation i ny flik eller fönster >>A Multimodal Approach for Clinical Diagnosis and Treatment
2011 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A computer-aided Clinical Decision Support System (CDSS) for diagnosis and treatment often plays a vital role and brings essential benefits for clinicians. Such a CDSS could function as an expert for a less experienced clinician or as a second option/opinion of an experienced clinician to their decision making task. Nevertheless, it has been a real challenge to design and develop such a functional system where accuracy of the system performance is an important issue.

This research work focuses on development of intelligent CDSS based on a multimodal approach for diagnosis, classification and treatment in medical domains i.e. stress and post-operative pain management domains. Several Artificial Intelligence (AI) techniques such as Case-Based Reasoning (CBR), textual Information Retrieval (IR), Rule-Based Reasoning (RBR), Fuzzy Logic and clustering approaches have been investigated in this thesis work.

Patient’s data i.e. their stress and pain related information are collected from complex data sources for instance, finger temperature measurements through sensor signals, pain measurements using a Numerical Visual Analogue Scale (NVAS), patient’s information from text and multiple choice questionnaires. The proposed approach considers multimedia data management to be able to use them in CDSSs for both the domains.

The functionalities and performance of the systems have been evaluated based on close collaboration with experts and clinicians of the domains. In stress management, 68 measurements from 46 subjects and 1572 patients’ cases out of ≈4000 in post-operative pain have been used to design, develop and validate the systems. In the stress management domain, besides the 68 measurement cases, three trainees and one senior clinician also have been involved in order to conduct the experimental work. The result from the evaluation shows that the system reaches a level of performance close to the expert and better than the senior and trainee clinicians. Thus, the proposed CDSS could be used as an expert for a less experienced clinician (i.e. trainee) or as a second option/opinion for an experienced clinician (i.e. senior) to their decision making process in stress management. In post-operative pain treatment, the CDSS retrieves and presents most similar cases (e.g. both rare and regular) with their outcomes to assist physicians. Moreover, an automatic approach is presented in order to identify rare cases and 18% of cases from the whole cases library i.e. 276 out of 1572 are identified as rare cases by the approach. Again, among the rare cases (i.e. 276), around 57.25% of the cases are classified as ‘unusually bad’ i.e. the average pain outcome value is greater or equal to 5 on the NVAS scale 0 to 10. Identification of rear cases is an important part of the PAIN OUT project and can be used to improve the quality of individual pain treatment.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2011
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 113
Nationell ämneskategori
Data- och informationsvetenskap
Forskningsämne
datavetenskap
Identifikatorer
urn:nbn:se:mdh:diva-13166 (URN)978-91-7485-043-7 (ISBN)
Disputation
2011-11-22, Paros, Mälardalens högskola, Västerås, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2011-10-21 Skapad: 2011-10-21 Senast uppdaterad: 2018-01-12Bibliografiskt granskad

Open Access i DiVA

fulltext(303 kB)828 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 303 kBChecksumma SHA-512
d54330fc1eac28e2f8189210d9138c8c1a8ddb699e4f007946b2cf9fd3b1ddd7486f014a30306437af0dd0428614dd1fe67b646de33fa911d9dc52b6a25e9b2f
Typ fulltextMimetyp application/pdf

Personposter BETA

Ahmed, Mobyen UddinBegum, ShahinaFunk, Peter

Sök vidare i DiVA

Av författaren/redaktören
Ahmed, Mobyen UddinBegum, ShahinaFunk, Peter
Av organisationen
Akademin för innovation, design och teknik
Data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 828 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 448 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf