The automotive customers demand new functionality with every new product release and the time-to-market is
constantly shortened. The automotive embedded systems are characterized by being mechatronic system which adds
complexity. The systems are often resource constrained and trade-offs between the system behavior and the resources required is of great importance. The decisions are usually based on many factors that pull in different directions such as maintenance, portability, usability etc. The complex system and the many uncertain factors create a need for support in the design process. In this paper the use of Real Options is evaluated on a hypothetic but realistic case taken from the automotive industry. The case show how real option valuation provides additional guidance when making system design decisions. Real Options provide the opportunity to analyze the cost of designing for future growth of an platform, based on the estimated value of the future functionality. The value of a flexible design can thereby be quantified making the trade-off between short and long term solution more accurate.