https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-time Biosignal Processing and Feature Extraction from PhotoplethysmographySignals for Cardiovascular Disease Monitoring
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-4841-2488
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0002-4368-4751
2024 (English)Conference paper, Oral presentation with published abstract (Other academic)
Abstract [en]

Photoplethysmography (PPG) signals offer a non-invasive and cost-effective mean sfor monitoring cardiovascular health. However, extracting clinically relevant information from these signals in real-time poses significant challenges. This paper presents a novel biosignal processingunit that utilizes the PPGFeat MATLAB toolbox to perform real-time signal processing and feature extraction from PPG signals, enabling continuous cardiovascular disease (CVD) monitoring andanalysis. We propose a system that interfaces with PPG sensors to acquire raw signals in real-time.The PPGFeat toolbox provides an interactive user interface, it identifies high-quality signals basedon their signal quality indices (SQIs) and performs segmentation The segmented PPG signals are then preprocessed by PPGFeat to remove noise and artifacts, smooth the waveforms, and correc tbaseline drift using a Chebyshev type II 4th order, 20 dB filter with a frequency range of 0.4–8 Hz.After preprocessing, a novel algorithm within PPGFeat is employed to accurately extract key fiducial points from the filtered PPG signals and their first and second derivatives. These includes ystolic peaks, diastolic peaks, onsets, and dicrotic notches, as well as inflection points, maxima, and minima on the derivative waveforms. Utilizing these extracted points, PPGFeat computes a comprehensive set of features, including pulse transit time, augmentation index, stiffness index,various magnitudes, and time intervals. These features characterize the PPG signal's morphology,timing intervals, and other relevant characteristics. These features are continuously streamed as output, providing a real-time stream of biomarkers and indicators for CVD analysis and monitoring.The resulting biomarkers and features can be fed into machine learning models or rule-based systems for real-time CVD identification, risk stratification, and monitoring applications. By utilizing PPGFeat's robust algorithms and proven accuracy, the proposed biosignal processing unit enables efficient real-time extraction of clinically relevant information from PPG signals, paving the way for improved cardiovascular health monitoring and personalized healthcare solutions.

Place, publisher, year, edition, pages
2024.
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:mdh:diva-68810OAI: oai:DiVA.org:mdh-68810DiVA, id: diva2:1910656
Conference
Medicinteknikdagarna, Göteborg 8–10 oktober 2024
Available from: 2024-11-05 Created: 2024-11-05 Last updated: 2024-11-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

https://www.medicinteknikdagarna.se/abstracts/

Authority records

Abdullah, SaadAbdelakram, HafidKristoffersson, Annica

Search in DiVA

By author/editor
Abdullah, SaadAbdelakram, HafidKristoffersson, Annica
By organisation
Embedded Systems
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 444 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf