https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Worst-Case Impact Assessment of Multi-Alarm Stealth Attacks Against Control Systems with CUSUM-Based Anomaly Detection
Mälardalens universitet, Akademin för innovation, design och teknik, Innovation och produktrealisering.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-1364-8127
2023 (engelsk)Inngår i: 2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS, ACSOS, 2023, nr 4th IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), s. 117-126Konferansepaper, Publicerat paper (Annet vitenskapelig)
Abstract [en]

Manipulating sensor data can deceive cyber-physical systems (CPSs), leading to hazardous conditions in physical plants. An Anomaly Detection System (ADS) like CUSUM detects ongoing attacks by comparing sensor signals with those generated by a model. However, physics-based methods are threshold-based, which can result in both false positives and undetectable attacks. This can lead to undetected attacks impacting the system state and potentially causing large deviations from the desired behavior. In this paper, we introduce a metric called transparency that uniquely quantifies the effectiveness of an ADS in terms of its ability to prevent state deviation. While existing research focuses on designing optimal zero-alarm stealth attacks, we address the challenge of detecting more sophisticated multi-alarm attacks that generate alarms at a rate comparable to the system noise. Through our analysis, we identify the conditions that require the inclusion of multi-alarm scenarios in worst-case impact assessments. We also propose an optimization problem designed to identify multi-alarm attacks by relaxing the constraints of a zero-alarm attack problem. Our findings reveal that multi-alarm attacks can cause a more significant state deviation than zero-alarm attacks, emphasizing their critical importance in the security analysis of control systems.

sted, utgiver, år, opplag, sider
2023. nr 4th IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), s. 117-126
Emneord [en]
security, control systems, optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-65354DOI: 10.1109/ACSOS58161.2023.00029ISI: 001122711700013Scopus ID: 2-s2.0-85181772989ISBN: 979-8-3503-3744-0 (tryckt)OAI: oai:DiVA.org:mdh-65354DiVA, id: diva2:1828580
Konferanse
4th IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS), Toronto, Canada, 25-29 September, 2023
Tilgjengelig fra: 2024-01-17 Laget: 2024-01-17 Sist oppdatert: 2024-01-17bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Gualandi, GabrielePapadopoulos, Alessandro

Søk i DiVA

Av forfatter/redaktør
Gualandi, GabrielePapadopoulos, Alessandro
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 50 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf