https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Machine Learning-Based Coarse Frequency Bands Classification For Cognitive Radio Applications
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.
Wireless P2P Technologies, Research and Development, Falun, Sweden.
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-2419-2735
Mälardalens universitet, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-7159-7508
Vise andre og tillknytning
2023 (engelsk)Inngår i: Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol., ECTI-CON, Institute of Electrical and Electronics Engineers Inc. , 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper is focused on multiple supervised machine learning algorithms' performance evaluation in terms of classification accuracy and speed for the blind frequency bands classification into three occupancy classes: white, gray, and black spaces for potential implementation in cognitive radio application. Training and validation data sets consisting of 180 000 samples, including 60 000 samples per class, have been collected in the controlled experiment. Data samples have been generated using a hardware signal generator and recorded on the receiver's front end as the time-domain complex signals. Gray space data samples contain one, two, or three signals modulated into 2FSK, BPSK, or QPSK with symbol rates 10, 100, or 1000 kSymbol/s. White space data samples contain no own generated signals. Black space data samples contain two signals with the symbol rate of 22.5 MSymbol/s and offset +14 MHz and -14 MHz from the central frequency occupying the entire observation band. Training and validation of twenty supervised machine learning algorithms have been performed offline in the Matlab Classification Learner application using the collected data set. Fine decision trees have demonstrated the highest classification accuracy of 87.8 %, the observed classification speed of 630000 Objects/s is also higher than the required 2000 Objects/s. Medium decision trees and ensemble boosted trees have demonstrated 87.5 % and 87.7 % accuracy and classification speeds of 950000 and 230000 Objects/s respectively. Therefore, ensemble boosted trees, and fine and medium decision trees have been selected for the deployment on the target radio application in the scope of future work.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers Inc. , 2023.
Emneord [en]
cognitive radio, decision trees, machine learning, vacant frequency channels, Classification (of information), Learning algorithms, Signal receivers, Classification accuracy, Data sample, Data set, Frequency channels, Machine learning algorithms, Machine-learning, Radio applications, Space data, Supervised machine learning, Vacant frequency channel
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-63918DOI: 10.1109/ECTI-CON58255.2023.10153155Scopus ID: 2-s2.0-85164912117ISBN: 9798350310467 (tryckt)OAI: oai:DiVA.org:mdh-63918DiVA, id: diva2:1784488
Konferanse
2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2023
Tilgjengelig fra: 2023-07-26 Laget: 2023-07-26 Sist oppdatert: 2023-07-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Valieva, InnaBjörkman, MatsÅkerberg, JohanEkström, Mikael

Søk i DiVA

Av forfatter/redaktør
Valieva, InnaBjörkman, MatsÅkerberg, JohanEkström, Mikael
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 16 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf