https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Analysis and optimization of a modified Kalina cycle system for low-grade heat utilization
Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Department of Mechanical and Production Engineering, Islamic University of Technology, Bangladesh.
Department of Mechanical and Production Engineering, Islamic University of Technology, Bangladesh.
Department of Mechanical and Production Engineering, Islamic University of Technology, Bangladesh.
Department of Mechanical and Production Engineering, Islamic University of Technology, Bangladesh.
Vise andre og tillknytning
2021 (engelsk)Inngår i: Energy Conversion and Management: X, E-ISSN 2590-1745, Vol. 12, artikkel-id 100121Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Kalina cycle system (KCS) offers an attractive prospect to produce power by utilizing low-grade heat sources where traditional power cycles cannot be implemented. Intending to explore the potential of exploiting low-grade heat sources for conversion to electrical energy, this study proposes two modified power generation cycles based on KCS-34. A multi-phase expander is positioned between the Kalina separator and the second heat regenerator in the proposed X-modification. In contrast, it is located between the mixer and second regenerator for Y-modification. To explore the potential benefits and limitations of the proposed modifications contrasted with the KCS-34, thermodynamic modeling and optimization have been conducted. The influence of critical decision parameters on overall cycle performance is analyzed. The result elucidates that by implementing an additional multi-phase expander, a significant amount of energy can be extracted from a lean ammonia water loop and X-modification can deliver superior thermodynamic performance compared with the Y-modification and the original KCS-34. With a reduced turbine inlet pressure of 58 bar and an ammonia concentration of 80%, the X-modified cycle's efficiency reaches a peak value of 17% and a net power yield of 1015 kW. An increase of 6.35% can be achieved compared with the conventional KCS-34 operating at the same conditions. Maximum exergy destruction of the working substance was observed in the condenser. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2021. Vol. 12, artikkel-id 100121
Emneord [en]
Kalina cycle system, Low-grade thermal source, Multi-phase expander, Thermodynamic analysis, Ammonia, Ammonium hydroxide, Regenerators, Cycle systems, Kalina cycle, Low grade, Lowgrade heat source (LGHS), Optimisations, Power, Thermal source, Thermoanalysis
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-57100DOI: 10.1016/j.ecmx.2021.100121ISI: 000733406600002Scopus ID: 2-s2.0-85122679932OAI: oai:DiVA.org:mdh-57100DiVA, id: diva2:1640408
Tilgjengelig fra: 2022-02-24 Laget: 2022-02-24 Sist oppdatert: 2024-06-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Salman, Chaudhary Awais

Søk i DiVA

Av forfatter/redaktør
Salman, Chaudhary Awais
Av organisasjonen
I samme tidsskrift
Energy Conversion and Management: X

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 89 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf