https://www.mdu.se/

mdu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Trade-Off between Computing Power and Energy Consumption of On-Board Data Processing in GPU Accelerated In-Orbit Space Systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-8096-3891
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0003-3242-6113
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7586-0409
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Unibap AB (Publ.).ORCID iD: 0000-0002-8785-5380
2021 (English)In: Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, E-ISSN 1884-0485, Vol. 19, no 5, p. 700-708, article id 19.700Article in journal (Refereed) Published
Abstract [en]

On-board data processing is one of the prior on-orbit activities that improves the performance capability of in-orbit space systems such as deep-space exploration, earth and atmospheric observation satellites, and CubeSat constellations. However, on-board data processing encounters higher energy consumption compared to traditional on-board space systems. This is because the traditional space systems employ simple processing units such as single-core microprocessors as the systems do not require heavy data processing. Moreover, solving the radiation hardness problem is crucial in space, and adopting a new processing unit is challenging.

In this paper, we consider a Graphics Processing Unit (GPU) accelerated in-orbit space system for on-board data processing. According to prior works, there exist radiation-tolerant GPU, and the computing capability of systems is improved by using heterogeneous computing method. We conduct experimental observations of energy consumption and computing potential using this heterogeneous computing method in our GPU accelerated in-orbit space systems.The results show that the proper use of GPU increases computing potential with 10-140 times and consumes between 8-130 times less energy. Furthermore, the entire task system consumes 10-65% of less energy compared to the traditional use of processing units.

Place, publisher, year, edition, pages
2021. Vol. 19, no 5, p. 700-708, article id 19.700
Keywords [en]
On-board Data Processing, Heterogeneous Computing, Energy Efficiency, GPU Accelerated On-board Computer
National Category
Computer Systems
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:mdh:diva-56078DOI: 10.2322/tastj.19.700OAI: oai:DiVA.org:mdh-56078DiVA, id: diva2:1599785
Available from: 2021-10-01 Created: 2021-10-01 Last updated: 2021-10-22Bibliographically approved
In thesis
1. Space Computing using COTS Heterogeneous Platforms: Intelligent On-Board Data Processing in Space Systems
Open this publication in new window or tab >>Space Computing using COTS Heterogeneous Platforms: Intelligent On-Board Data Processing in Space Systems
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Space computing enriches space activities such as deep-space explorations and in-orbit intelligent decision making. The awareness of space computing is growing due to the technological advances of high-performance commercial off-the-shelf (COTS) computing platforms. Space offers a complex, constrained and challengeable environment to the developers, researchers, as well as human beings. The challenges are size, weight and power (SWaP) constraints, real-time requirements, communication limitations as well as radiation effects. The research conducted in this thesis aims at investigating and supporting intelligent on-board data processing using COTS heterogeneous computing platforms in space systems. These platforms embed at least one Central Processing Unit (CPU) and one Graphics Processing Unit (GPU) on the same chip. 

The main goal of the research presented in this thesis is twofold. First, to investigate the heterogeneous computing platforms for the purpose of proposing a solution to tackle the above-mentioned challenges in space systems. Second, to complement the proposed solution with novel scheduling techniques for real-time applications that run on COTS heterogeneous platforms under harsh environments like space.

The proposed techniques are based on the system model that considers the use of alternative executions of parallel segments of tasks. Although offloading a parallel segment to a parallel computation unit (such as GPU) improves the best-case execution times of most applications, it can increase the response times of tasks in some applications due to the overuse of GPU. Hence, the use of the proposed task model can be a key to decrease the response times of tasks and improve schedulability of the system. The server-based proposed scheduling techniques support the proposed task model by guaranteeing the execution slot for parallel segments on CPU(s). 

The experimental evaluation conducted in this thesis shows that the proposed task model can improve the schedulability of the real-time systems up to 90% with the static allocation of applications. Moreover, the dynamic allocation method using the server-based scheduling with the proposed task model can improve the schedulability up to 16%. Finally, the thesis presents a simulation tool that simulates real-time applications using the proposed task model while considering the different levels of radiation tolerance to different processing units.

Abstract [sv]

Rymddata berikar rymdaktiviteter som utforskningar i djupa rymden och intelligent beslutsfattande i omloppsbana. Medvetenheten om rymddatorn ökar på grund av de tekniska framstegen inom högpresterande commercial off-the-shelf (COTS). Utrymme erbjuder utvecklare, forskare och människor en komplex, begränsad och utmanande miljö. Utmaningarna är storlek, vikt och effekt (SWaP), realtidskrav, kommunikationsbegränsningar samt strålningseffekter. Forskningen som bedrivs i denna avhandling syftar till att undersöka och stödja intelligent omborddatabehandling med hjälp av COTS heterogena datorplattformar i rymdsystem. Dessa plattformar bäddar in minst en Central Processing Unit (CPU) och en Graphics Processing Unit (GPU) på samma chip.

Huvudmålet för den forskning som presenteras i denna avhandling är tvåfaldigt. För det första att undersöka de heterogena dataplattformarna i syfte att föreslå en lösning för att hantera ovan nämnda utmaningar i rymdsystem. För det andra, för att komplettera den föreslagna lösningen med nya schemaläggningstekniker för realtidsapplikationer som körs på COTS heterogena plattformar under tuffa miljöer som rymden.

De föreslagna teknikerna är baserade på systemmodellen som överväger användningen av alternativa utföranden av parallella segment av uppgifter. Även om avlastning av ett parallellt segment till en parallell beräkningsenhet (t.ex. GPU) förbättrar de bästa tillämpningstiderna för de flesta applikationer, kan det öka svarstiderna för uppgifter i vissa applikationer på grund av överanvändning av GPU. Därför kan användningen av den föreslagna uppgiftsmodellen vara en nyckel för att minska responstiderna för uppgifter och förbättra systemets schemaläggning. De serverbaserade föreslagna schemaläggningsteknikerna stöder den föreslagna uppgiftsmodellen genom att garantera exekveringsplatsen för parallella segment på CPU (er).

Den experimentella utvärderingen som utförs i denna avhandling visar att den föreslagna uppgiftsmodellen kan förbättra schemaläggningen för realtidssystem upp till 90% med statisk tilldelning av applikationer. Dessutom kan den dynamiska tilldelningsmetoden som använder den serverbaserade schemaläggningen med den föreslagna uppgiftsmodellen förbättra schemaläggningen med upp till 16%. Slutligen presenterar avhandlingen ett simuleringsverktyg som simulerar applikationer i realtid med hjälp av den föreslagna uppgiftsmodellen samtidigt som man beaktar de olika nivåerna av strålningstolerans för olika behandlingsenheter.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2021
Series
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 347
Keywords
space computing, CPU-GPU heterogeneous computing, intelligent on-board data processing
National Category
Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-56086 (URN)978-91-7485-528-9 (ISBN)
Public defence
2021-11-18, Alfa, Mälardalens högskola, Västerås, 13:15 (English)
Opponent
Supervisors
Available from: 2021-10-08 Created: 2021-10-01 Last updated: 2021-10-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Tsog, NandinbaatarMubeen, SaadSjödin, MikaelBruhn, Fredrik

Search in DiVA

By author/editor
Tsog, NandinbaatarMubeen, SaadSjödin, MikaelBruhn, Fredrik
By organisation
Embedded Systems
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf