https://www.mdu.se/

mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Performance and Characteristics of Wearable Sensor Systems Discriminating and Classifying Older Adults According to Fall Risk: A Systematic Review
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. (Embedded Systems)ORCID-id: 0000-0002-4368-4751
Motion Control AB, Sweden.ORCID-id: 0000-0002-4947-5037
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system. (Embedded Systems)ORCID-id: 0000-0002-5179-7158
2021 (engelsk)Inngår i: Sensors, E-ISSN 1424-8220, Vol. 21, nr 17, artikkel-id 5863Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

Sensor-based fall risk assessment (SFRA) utilizes wearable sensors for monitoring individuals’ motions in fall risk assessment tasks. Previous SFRA reviews recommend methodological improvements to better support the use of SFRA in clinical practice. This systematic review aimed to investigate the existing evidence of SFRA (discriminative capability, classification performance) and methodological factors (study design, samples, sensor features, and model validation) contributing to the risk of bias. The review was conducted according to recommended guidelines and 33 of 389 screened records were eligible for inclusion. Evidence of SFRA was identified: several sensor features and three classification models differed significantly between groups with different fall risk (mostly fallers/non-fallers). Moreover, classification performance corresponding the AUCs of at least 0.74 and/or accuracies of at least 84% were obtained from sensor features in six studies and from classification models in seven studies. Specificity was at least as high as sensitivity among studies reporting both values. Insufficient use of prospective design, small sample size, low in-sample inclusion of participants with elevated fall risk, high amounts and low degree of consensus in used features, and limited use of recommended model validation methods were identified in the included studies. Hence, future SFRA research should further reduce risk of bias by continuously improving methodology.

sted, utgiver, år, opplag, sider
2021. Vol. 21, nr 17, artikkel-id 5863
Emneord [en]
fall risk, classification, assessment, older adults, inertial sensors, wearable sensors
HSV kategori
Forskningsprogram
elektronik
Identifikatorer
URN: urn:nbn:se:mdh:diva-55767DOI: 10.3390/s21175863ISI: 000694523400001PubMedID: 34502755Scopus ID: 2-s2.0-85114012910OAI: oai:DiVA.org:mdh-55767DiVA, id: diva2:1591322
Forskningsfinansiär
Knowledge Foundation, 20180158Tilgjengelig fra: 2021-09-06 Laget: 2021-09-06 Sist oppdatert: 2022-02-10bibliografisk kontrollert

Open Access i DiVA

fulltext(3784 kB)156 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3784 kBChecksum SHA-512
13773a8d90e477063a814134cdcdadd08affaf3e5b7a83944b0b943f6a6095c80ca7fef0df587706abbf582696a98d4877076582c3e1b33826835c0150c9005e
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMedScopushttps://www.mdpi.com/1424-8220/21/17/5863

Person

Kristoffersson, AnnicaDu, JiayingEhn, Maria

Søk i DiVA

Av forfatter/redaktør
Kristoffersson, AnnicaDu, JiayingEhn, Maria
Av organisasjonen
I samme tidsskrift
Sensors

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 156 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 131 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf