This paper presents an extension of a recently developed high order finite difference method for the wave equation on a grid with non-conforming interfaces. The stability proof of the existing methods relies on the interpolation operators being norm-contracting, which is satisfied by the second and fourth order operators, but not by the sixth order operator. We construct new penalty terms to impose interface conditions such that the stability proof does not require the norm-contracting condition. As a consequence, the sixth order accurate scheme is also provably stable. Numerical experiments demonstrate the improved stability and accuracy property.