https://www.mdu.se/

mdu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Uncertainty in Hourly Readings from District Heat Billing Meters
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi. Eskilstuna Kommunfastighet, Eskilstuna, Sweden.ORCID-id: 0000-0003-3530-0209
Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, Framtidens energi.ORCID-id: 0000-0002-7233-6916
2019 (Engelska)Ingår i: Proceedings of SIMS 2019, Linköping: Linköping University Electronic Press, Linköpings universitet , 2019Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Hourly energy readings from heat billing meters are valuable data source for the energy performance assessment of district heating substations and the buildings they serve. The quality of such analyses is bounded by the accuracy of the hourly readings. Thus, assessing the accuracy of the hourly heat meter readings is a necessary (but often overlooked) first step to ensure qualitative subsequent analyses. Due to often limited bandwidth capacity hourly readings are quantized before transmission, which can cause severe information loss. In this paper, we study 266 Swedish heat meters and assess the quantization effect by information entropy ranking. Further, a detailed comparison is conducted with three heat meters with typically occurring quantization errors. Uncertainty due to the quantization effect is compared with the uncertainty due to typical accuracy of the meter instrumentation. A method to conflate information from both energy readings and energy calculated from flow and temperature readings is developed. The developed conflation method is shown to be able to decrease uncertainty for heat meters with severely quantized energy readings. However, it is concluded that a preferable approach is to work with the heat meter infrastructure to ensure the future recorded readings holds high enough quality to be useful for energy performance assessments with hourly or sub-hourly readings.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, Linköpings universitet , 2019.
Serie
Linköping Electronic Conference Proceedings, ISSN 1650-3686, E-ISSN 1650-3740
Nyckelord [en]
heat meters, uncertainty, district heating, information entropy, EN 1434
Nationell ämneskategori
Energisystem
Identifikatorer
URN: urn:nbn:se:mdh:diva-49376DOI: 10.3384/ecp20170212OAI: oai:DiVA.org:mdh-49376DiVA, id: diva2:1452359
Konferens
The 60th SIMS Conference on Simulation and Modelling SIMS 2019, August 12-16, Västerås, Sweden
Tillgänglig från: 2020-07-06 Skapad: 2020-07-06 Senast uppdaterad: 2020-07-06Bibliografiskt granskad
Ingår i avhandling
1. Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
Öppna denna publikation i ny flik eller fönster >>Probabilistic Calibration of Building Energy Models: For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings
2020 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

There is a global need to reduce energy consumption and integrate a larger share of renewable energy production while meeting expectations for human well-being and economic growth. Buildings have a key role to play in this transition to more sustainable cities and communities.

Building energy modeling (BEM) and simulation are needed to gain detailed knowledge ofthe heat flows and parameters that determine the thermal energy performance of a building. Remote sensing techniques have enabled the generation of geometrical representations of existing buildings on the scale of entire cities. However, parameters describing the thermal properties ofthe building envelope and the technical systems are usually not readily accessible in a digitized form and need to be inferred. Further, buildings are complex systems with indoor environmental conditions that vary dynamically under the stochastic influence of weather and occupant behavior and the availability of metering data is often limited. Consequently, robust inference is needed to handle high and time-varying uncertainty and a varying degree of data availability.

This thesis starts with investigation of meteorological reanalyses, remote sensing and onsite metering data sources. Next, the developed dynamic and physics-based BEM, consisting of a thermal network and modeling procedures for the technical systems, passive heat gains and boundary conditions, is presented. Finally, the calibration framework is presented, including a method to transform a deterministic BEM into a fully probabilistic BEM, an iterated extended Kalman filtering algorithm and a probabilistic calibration procedure to infer uncertain parameters and incorporate prior knowledge.

The results suggest that the proposed BEM is sufficiently detailed to provide actionable insights, while remaining identifiable given a sufficiently informative prior model. Such a prior model can be obtained based solely on knowledge of the underlying physical properties of the parameters, but also enables incorporation of more specific information about the building. The probabilistic calibration approach has the capability to combine evidence from both data and knowledge-based sources; this is necessary for robust inference given the often highly uncertain reality in which buildings operate.

The contributions of this thesis bring us a step closer to producing models of existing buildings, on the scale of whole cities, that can simulate reality sufficiently well to gain actionable insights on thermal energy performance, enable buildings to act as active components of the energy system and ultimately increase the operational resilience of the built environment.

Ort, förlag, år, upplaga, sidor
Västerås: Mälardalen University, 2020
Serie
Mälardalen University Press Dissertations, ISSN 1651-4238 ; 318
Nationell ämneskategori
Energisystem
Forskningsämne
energi- och miljöteknik
Identifikatorer
urn:nbn:se:mdh:diva-49378 (URN)978-91-7485-473-2 (ISBN)
Disputation
2020-09-10, Milos + digital (Zoom), Mälardalens högskola, Västerås, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2020-07-06 Skapad: 2020-07-06 Senast uppdaterad: 2020-07-10Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Person

Lundström, LukasDahlquist, Erik

Sök vidare i DiVA

Av författaren/redaktören
Lundström, LukasDahlquist, Erik
Av organisationen
Framtidens energi
Energisystem

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 49 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf