mdh.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Genetic Algorithm Approach to Multi-Agent Mission Planning Problems
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-5224-8302
Mälardalens högskola, Akademin för innovation, design och teknik, Inbyggda system.ORCID-id: 0000-0002-5832-5452
Mälardalens högskola, Akademin för innovation, design och teknik.ORCID-id: 0000-0002-1364-8127
2020 (engelsk)Inngår i: Operations Research and Enterprise Systems / [ed] Parlier G.; Liberatore F.; Demange M., Springer, Cham , 2020, s. 109-134Kapittel i bok, del av antologi (Annet vitenskapelig)
Abstract [en]

Multi-Agent Systems (MASs) have received great attention from scholars and engineers in different domains, including computer science and robotics. MASs try to solve complex and challenging problems (e.g., a mission) by dividing them into smaller problem instances (e.g., tasks) that are allocated to the individual autonomous entities (e.g., agents). By fulfilling their individual goals, they lead to the solution to the overall mission. A mission typically involves a large number of agents and tasks, as well as additional constraints, e.g., coming from the required equipment for completing a given task. Addressing such problem can be extremely complicated for the human operator, and several automated approaches fall short of scalability. This paper proposes a genetic algorithm for the automation of multi-agent mission planning. In particular, the contributions of this paper are threefold. First, the mission planning problem is cast into an Extended Colored Traveling Salesperson Problem (ECTSP), formulated as a mixed integer linear programming problem. Second, a precedence constraint reparation algorithm to allow the usage of common variation operators for ECTSP is developed. Finally, a new objective function minimizing the mission makespan for multi-agent mission planning problems is proposed.

sted, utgiver, år, opplag, sider
Springer, Cham , 2020. s. 109-134
Emneord [en]
Multi-Agent Systems, Multi-agent mission planning, Extended Colored Traveling Salesperson (ECTSP), Genetic algorithms
HSV kategori
Identifikatorer
URN: urn:nbn:se:mdh:diva-46604DOI: 10.1007/978-3-030-37584-3_6Scopus ID: 2-s2.0-85076881781ISBN: 978-3-030-37584-3 (tryckt)OAI: oai:DiVA.org:mdh-46604DiVA, id: diva2:1381268
Prosjekter
Future factories in the CloudAggregate Farming in the CloudTilgjengelig fra: 2019-12-20 Laget: 2019-12-20 Sist oppdatert: 2020-01-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Miloradović, BrankoCuruklu, BaranEkström, Mikael

Søk i DiVA

Av forfatter/redaktør
Miloradović, BrankoCuruklu, BaranEkström, MikaelPapadopoulos, Alessandro
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 38 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf