mdh.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Trade-Off between Computing Power and Energy Consumption of On-Board Data Processing in GPU Accelerated Real-Time Systems
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-8096-3891
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems.ORCID iD: 0000-0001-7586-0409
Mälardalen University, School of Innovation, Design and Engineering, Embedded Systems. Unibap AB, Uppsala, Sweden.ORCID iD: 0000-0002-8785-5380
2019 (English)Conference paper, Published paper (Refereed)
Abstract [en]

On-board data processing is one of the prior on-orbit activities that it improves the performance capability of in-orbit space systems such as deep-space exploration, earth and atmospheric observation satellites, and CubeSat constellations. However, on-board data processing encounters with higher energy consumption compared to traditional space systems. Because traditional space systems employ simple processing units such as micro-controllers or a single-core processor as the systems require no heavy data processing on orbit. Moreover, solving the radiation hardness problem is crucial in space and adopting a new processing unit is challenging.

In this paper, we consider a GPU accelerated real-time system for on-board data processing. According to prior works, there exist radiation-tolerant GPU, and the computing capability of systems is improved by using heterogeneous computing method. We conduct experimental observations of power consumption and computing potential using this heterogeneous computing method in our GPU accelerated real-time system.The results show that the proper use of GPU increases computing potential with 10-140 times and consumes between 8-130 times less energy. Furthermore, the entire task system consumes 10-65% of less energy compared to the traditional use of processing units.

Place, publisher, year, edition, pages
2019.
Keywords [en]
Trade-off, Computing power, Energy consumption, on-board data processing, GPU acceleration, Real-time systems
National Category
Engineering and Technology Computer Systems
Identifiers
URN: urn:nbn:se:mdh:diva-45938OAI: oai:DiVA.org:mdh-45938DiVA, id: diva2:1369128
Conference
The 32nd International Symposium on Space Technology and Science, Fukui, Japan
Projects
DPAC - Dependable Platforms for Autonomous systems and ControlAvailable from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-11-22Bibliographically approved
In thesis
1. Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
Open this publication in new window or tab >>Improving On-Board Data Processing using CPU-GPU Heterogeneous Architectures for Real-Time Systems
2019 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis investigates the efficacy of heterogeneous computing architectures in real-time systems.The goals of the thesis are twofold. First, to investigate various characteristics of the Heterogeneous System Architectures (HSA) compliant reference platforms focusing on computing performance and power consumption. The investigation is focused on the new technologies that could boost on-board data processing systems in satellites and spacecraft. Second, to enhance the usage of the heterogeneous processing units by introducing a technique for static allocation of parallel segments of tasks.

The investigation and experimental evaluation show that our method of GPU allocation for the parallel segments of tasks is more energy efficient compared to any other studied allocation. The investigation is conducted under different types of environments, such as process-level isolated environment, different software stacks, including kernels, and various task set scenarios. The evaluation results indicate that a balanced use of heterogeneous processing units (CPU and GPU) could improve schedulability of task sets up to 90% with the proposed allocation technique.

Abstract [sv]

Denna avhandling undersöker effektiviteten hos heterogena datorarkitekturer i realtidssystem. Målet med avhandlingen är tvåfaldigt. Till att börja med, att undersöka olika egenskaper hos plattformar baserade på Heterogeneous System Architecture, med fokus på datorprestanda och strömförbrukning. Undersökningen är inriktad på tekniker som kan öka datorbehandlingssystemen ombord i satelliter och rymdskepp. För det andra förbättra användningen av heterogena arkitekturer genom att införa en teknik för statisk allokering av parallella programsegment.

Undersökningen och den experimentella utvärderingen visar att vår metod för effektiv användning av GPU-allokering för parallella programsegment är den mest energieffektiva jämfört med någon annan studerad allokering. Undersökningarna har genomförts i olika typer av miljöer, såsom processisolerad miljö, olika mjukvarustackar, inklusive kernel, och olika uppsättningsscenarier. Utvärderingsresultaten indikerar dessutom att en balanserad användning av heterogena beräkningsenheter (CPU och GPU) kan förbättra schemaläggningen för vissa program upp till 90% jämfört med de tidigare föreslagna allokeringsteknikerna.

Place, publisher, year, edition, pages
Västerås: Mälardalen University, 2019
Series
Mälardalen University Press Licentiate Theses, ISSN 1651-9256 ; 286
Keywords
on-board data processing, CPU-GPU, heterogeneous architectures, real-time systems
National Category
Engineering and Technology Computer Systems
Research subject
Computer Science
Identifiers
urn:nbn:se:mdh:diva-45940 (URN)978-91-7485-450-3 (ISBN)
Presentation
2019-12-18, Kappa, Mälardalens högskola, Västerås, 09:15 (English)
Opponent
Supervisors
Projects
DPAC - Dependable Platforms for Autonomous systems and Control
Available from: 2019-11-11 Created: 2019-11-11 Last updated: 2019-11-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Tsog, NandinbaatarSjödin, MikaelBruhn, Fredrik

Search in DiVA

By author/editor
Tsog, NandinbaatarSjödin, MikaelBruhn, Fredrik
By organisation
Embedded Systems
Engineering and TechnologyComputer Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 7 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf